2023年《椭圆及其标准方程》说课稿3篇
《椭圆及其标准方程》说课稿1 【教材分析】 一、教材的地位 本节是北师大版数学选修2-1第三章第一节的第一课时,是继学习圆之后运用“曲线和方程”解决具体二次曲线的又一实例.它不仅是对前面所学的下面是小编为大家整理的2023年《椭圆及其标准方程》说课稿3篇,供大家参考。
《椭圆及其标准方程》说课稿1
【教材分析】
一、教材的地位
本节是北师大版数学选修2-1第三章第一节的第一课时,是继学习圆之后运用“曲线和方程”解决具体二次曲线的又一实例.它不仅是对前面所学的运用坐标法研究曲线的再次应用,同时它也为下一节研究椭圆的几何性质做了铺垫;从方法上讲,它为我们研究其他二次曲线(双曲线、抛物线)提供了基本模式和理论基础,具有很重要的类比价值.因此,这节课有承前启后的作用,并为本章最后从整体的角度认识圆锥曲线提供了重要的学习经验,是本节乃至本章的重点.
二、教学目标
新课标中要求:经历从具体情境中抽象出椭圆模型的过程,掌握椭圆的定义及标准方程.基于此,我特提出以下教学目标:
1.知识与技能:(1)理解椭圆的定义;
(2)体会椭圆标准方程推导过程并掌握其标准方程;
(3)会求一些简单的椭圆的标准方程.
2.过程与方法:(1)让学生亲身经历椭圆的定义和其标准方程的形成过程,掌握求曲线方程的方法和数形结合的思想;
(2)学会用类比、数形结合、分类讨论等数学思想方法,提高学生解决几何问题的能力.
3.情感态度、价值观:(1)通过主动探究、合作学习,感受探索的乐趣与成功的喜悦,培养其探索能力、合作品质和进取精神;
(2通过椭圆知识的学习,进一步体会到数与形的和谐美,几何图形的对称美,建立数学的审美观。
三、教学重、难点
重点:椭圆的定义及其标准方程;
难点:椭圆标准方程的推导.
【学情分析】
学生已经在必修2中学习了解析几何初步(直线和圆的方程),初步了解了用坐标法求曲线的方程及其基本步骤,经历了动手实验、观察分析、归纳概括、建立模型的基本过程,这为进一步学习椭圆及其标准方程做好了知识方法上的准备.
但是我们学校的学生数学基础相对薄弱,运算能力还不是很强,所以在椭圆标准方程的推导过程中肯定会有相当一部分学生受阻,在教学中还需及时、适时点拨,并通过具体的练习、操作进一步强化.
【教法与学法分析】
一、教法的选择
科学合理的教学方法能使教学效果事半功倍。基于上述分析,我采取的是教学方法是“小组合作探究”,通过设置情境——提出问题——合作探究——生成结论这样的方式让学生完成从直观到抽象,再到一般的学习过程。采用激发兴趣、参与合作、自主探究的学习,形成师生互动、生生互动的良好教学氛围。
二、学法指导的实施
1.通过课前预习回顾圆的定义及圆的方程的推导过程,从而为课堂中形成椭圆的定义及椭圆的标准方程的推导做好准备,课堂中对新知的接受也变得自然。让学生体会到类比思想的应用;
2.通过利用椭圆定义探索椭圆方程的过程,指导学生进一步理解数形结合思想;通过揭示由于椭圆位置的不确定所引起的分类讨论,进行分类讨论思想运用的指导。
3.通过解题思路的脉络分析,对学生进行解题思考的指导。
《椭圆及其标准方程》说课稿2
大家好!
我说课的题目是人教版普通高中课程选修2—1第二章第一节《椭圆及其标准方程》。下面我就教材分析、学生情况分析、教学目标、教法与学法、教学过程的设计、板书设计、教学设计说明这几方面内容向大家进行阐述。
一、教材分析
圆锥曲线是高中数学中十分重要的内容,它的许多几何性质在日常生活、生产和科学技术中都有着广泛的应用。本节是《圆锥曲线与方程》的第一节课,主要学习椭圆的定义和标准方程。它是本章也是整个解析几何部分的重要基础知识,原因如下:
第一,在教材结构上,本节内容起到一个承上启下的重要作用。前面学生用坐标法研究了直线和圆,而对椭圆概念与方程的研究是坐标法的深入,也适用于对双曲线和抛物线的学习,更是解决圆锥曲线问题的一种有效方法。
第二,对椭圆定义与方程的研究,将曲线与方程对应起来,体现了函数与方程、数与形结合的重要思想。而这种思想,将贯穿于整个高中阶段的数学学习。
第三,对椭圆定义与方程的探究过程,使学生经历了观察、猜测、实验、推理、交流、反思等理性思维过程,培养了学生的思维方式,加强了运算能力,提高了他们提出问题、分析问题、解决问题的能力,为后续知识的学习奠定了基础。
二、学生情况分析
1、在学习本节内容以前,学生已经学习了直线和圆的方程,初步了解了用坐标法求曲线的方程及其基本步骤,经历了动手实验、观察分析、归纳概括、建立模型的基本过程,这为进一步学习椭圆及其标准方程奠定了基础。
2、经过两年的高中学习,学生的计算能力、分析解决问题的能力、归纳概括能力、建模能力都有了明显提高,使得进一步探究学习本节内容成为可能。但是,在本节课的学习过程中,椭圆定义的归纳概括、方程的推导化简对学生是一个考验,可能会有一部分学生探究学习受阻,教师要适时加以点拨指导。
三、教学目标
根据学生的实际、课标的要求和本节课内容的特点,教学目标确定如下:
(一)教学目标
1、通过观察、实验、证明等方法的运用,让学生理解椭圆的定义,掌握椭圆。
标准方程的两种形式,并根据条件会求椭圆的标准方程。
2、通过对椭圆的认识及其方程的推导,培养学生的分析、探究、抽象、概括等逻辑思维能力,加强用坐标法解决圆锥曲线问题的能力。
3、鼓励学生大胆猜想、论证,激发学生的学习热情,使他们获得成功的体验。
(二)教学重点和难点
1、重点:感受建立曲线方程的基本过程,掌握椭圆的标准方程及其推导方法。
2、难点:椭圆标准方程的推导。
四、教法与学法
1.教法
为了使学生更主动地参加到课堂教学中,体现以学生为主体的探究性学习和因材施教的原则,故采用自主探究法。按照“创设情境——自主探究——建立模型——拓展应用”的模式来组织教学。
2.学法
在教学过程中,要充分调动学生的积极性和主动性,为学生提供自主学习的时间和空间。让他们经历椭圆图形的形成过程、定义的归纳概括过程、方程的推导化简过程,主动地获取知识。
3.教学准备
(1)学生准备:一支铅笔、两个图钉、一根细绳、一张硬纸板。
(2)教师准备:用几何画板制作的相关课件。
五、教学过程的设计
(一)创设情境,复习引入
首先,提出问题:“前一段时间我们学习了直线和圆的方程,用到了两种方法,是什么呢?”学生经过回忆,容易得出结论。这时,教师指出:这两种方法是解析几何中研究曲线与方程常用的方法。
接下来我用课件演示一些天体运行的轨迹图,并提出问题:“这些天体运行的轨迹是什么呢?”
学生经过观察,很直观地看出是椭圆,从而引出课题。
再次提问:“我们能否求出这些天体运行的轨迹方程呢?学习了本节课的内容,就可以解决这个问题。”
这样设计的意图是:一方面,通过复习前面学过的有关知识,唤起学生的记忆,为本节课学习作好铺垫。另一方面,借助多媒体生动、直观的演示,使学生明确学习椭圆的重要性和必要性。同时,激发他们探求实际问题的兴趣,使他们主动、积极地参与到教学中来,为后面的学习做好准备。
(二)动手实验,归纳概念
“一石激起千层浪”,一个富有挑战性的问题,将会把学生带入自主探究的情境中去。此时,学生已经有了浓厚的学习兴趣,我继续提问:“你们还记得前面我们不用圆规是怎样画出圆的图形的?又是怎样给圆下定义的?”在学生回答后,我用课件演示圆的形成过程。
接着,我让学生拿出事先准备好的学具,动手实验。类比画圆的过程,看能否画出椭圆,并给予指导。待大多数学生都有了结果后,我再用课件演示画椭圆的过程。提出问题:“在画图的过程中,哪些量发生了变化,哪些量没有变?”
让学生根据自己的实验,观察回答:“两定点间的距离没变,绳子的长度没变,点在运动。”
我继续提问:“你们能根据刚才画椭圆的过程,类比圆的定义,归纳概括出椭圆的定义吗?”
先让学生独立思考一分钟,然后同桌交流,再进行全班交流,逐步完善,概括出椭圆的定义。
椭圆的定义:
*面内与两个定点的距离之和等于常数的点的轨迹叫做椭圆。定点叫做椭圆的焦点,间的距离叫做椭圆的焦距。得到椭圆的定义后,我会引导学生对定义中的关键词进行分析理解,帮助学生更好地领会椭圆的定义。
此时,可能会有学生提出:“为何‘常数’要大于两定点间的距离呢?等于、小于又如何呢?”
我不急于告诉学生答案,先让学生思考并发表自己的见解,最后再用课件演示进行说明。
这样设计的意图是:以活动为载体,让学生在“做”中学数学,通过画椭圆,经历知识的形成过程,积累感性经验。同时,我力求改变单一、被动的学习方式,让学生成为学习的主人,给他们提供一个自主探索学习的机会,让他们通过观察、讨论,归纳概括出椭圆的定义,这样既获得了知识,又培养了学生抽象思维、归纳概括的能力。
(三)启发引导,推导方程
提出了问题就要解决问题,怎么推导椭圆的标准方程呢?让学生运用研究直线与圆的方程的方法——坐标法,去推导椭圆的方程。本环节我按如下几个步骤进行:
(1)建立直角坐标系,设出动点的坐标
我启发学生类比求圆的方程的建系方法,建立适当的直角坐标系。学生可能会有如下几种建系方案:
方案1:以定点F1为原点,两定点的连线为X轴;
方案2:以定点F2为原点,两定点的连线为X轴;
方案3:以两定点的连线为X轴,其垂直*分线为Y轴;
方案4:以两定点的连线为Y轴,其垂直*分线为X轴。
我加以引导:根据建立坐标系的一般原则,使点的坐标、几何量的表达式简单化,并使得到的方程具有“对称美”“简洁美”的特点,你们会选择哪种方案呢?经过讨论,大多数学生可能会选择方案3或方案4来推导椭圆的标准方程,我表示赞同。按方案3建系,引导学生设出动点M的坐标及相关常数。
(2)写出动点M满足的集合
这里我启发学生根据椭圆的定义,写出动点M满足的集合,即:P=。
如果学生有困难,可以安排进行小组讨论交流。
(3)坐标化
引导学生在设点的基础上,将前面得到的关系式用坐标表示出来。这里学生不会有太大的困难,绝大多数学生都能得到方程:
(4)化简
带根式的方程的化简,学生会感到困难,这也是教学的一个难点。特别是由点适合的条件列出的方程为两个二次根式的和等于一个非零常数的形式,化简时要进行两次*方,且方程中字母多,次数高,初中代数中没有做过这样的题目,教学时,要注意说明这类方程的化简方法。一般来说:
①方程中只有一个二次根式时,需将它单独留在方程的`一边,把其它各项移到另一边,*方一次;②方程中有两个二次根式时,需将它们分散,放在方程的两边,使其中一边只有一个根式,*方两次。
接着让学生自己动手开始化简。我安排一名程度较好的学生上来板演,以便点评。待大多数学生都有了结果
之后,我指出:这个方程还不够简洁对称,让学生观察图形:
提出问题:“你们能从图中找出表示a、c、
的线段吗?”
通过观察,学生容易得出结论,并理解了换元的合理性。这样不仅使方程具有了对称性,而且使字母b也有了明确的几何意义。从而将方程简化为:
告诉学生:可以证明它就是椭圆的方程,我们称它为椭圆的标准方程。
小结:这样用坐标法推导出了椭圆的标准方程,也是求曲线方程的一般方法,总结步骤为:建系设点、写出动点满足的集合、列式、化简。
这样设计的意图是:使学生完全成了学习的主人,由被动的接受变成主动的获取。通过讨论,让学生互相交流,互相学习,培养他们的合作意识和谦虚好学的品质。在师生互动的过程中,让学生体会数学的严谨,使他们的观察能力、运算能力、推理能力得到训练,渗透数形结合的数学思想。并感受椭圆方程、图形的对称美,获得成功的喜悦!
(四)拓展引申,对比分析
本环节我首先提出问题:“刚才我们得到了焦点在X轴上的椭圆方程,如何推导焦点在Y轴上的椭圆的标准方程呢?”
学生可能不假思索地回答:“按方案4建系再推一遍”。
我启发:“可以,还有别的方法吗?”
学生经过观察思考会发现,只要交换坐标轴就可以了,从而得到了焦点在Y轴上的椭圆的标准方程:
接下来,我通过表格的形式,让学生对两种方程进行对比分析,强化对椭圆方程的理解。
这样设计的意图是:通过填表,进行对比总结,不仅使学生加深了对椭圆定义和标准方程的理解,有助于教学目标的实现,而且使学生体会和学习类比的思想方法,为后边双曲线、抛物线及其它知识的学习打下基础。
(五)范例教学,巩固练习
学会了知识就要运用知识。我设计了如下例题:
【例1】根据椭圆的标准方程,判断焦点的位置,并求其坐标(口答):
【例2】求适合下列条件的椭圆的标准方程:
(1)已知椭圆的焦点坐标是F1(-4,0)、F2(4,0),椭圆上任一点到F1、F2的距离之和为10,求椭圆的标准方程。
(2)两个焦点的坐标分别是(0,-2)、(0,2),并且椭圆经过点。
(分析后多媒体显示过程)
【强化提高——嫦娥奔月】
2007年10月24日*“嫦娥”一号卫星成功实现第一次近月制动,卫星进入距月球表面近月点高度约210公里,远月点高度约8600公里,且以月球的球心为一个焦点的椭圆形轨道。已知月球半径约3475公里,试求“嫦娥”一号卫星运行的轨迹方程。
这样设计的意图是:例1、例2从基础入手,通过练习,使学生更好地理解椭圆标准方程的两种形式,各个量之间的关系,掌握求椭圆标准方程的方法。设计“嫦娥奔月”题,目的在于联系现实,逐层深入,由易到难,不仅激发了学生的学习兴趣和探究精神,而且使他们深刻地体会到数学来源于生活,又服务于生活实际,学以致用。
(六)归纳小结,布置作业
到这里,本节课的主要内容也学习完了,让学生归纳总结,这节课学到了什么知识?掌握了什么方法?还有什么问题?教师再概括。
(1)归纳小结
①两种类型的椭圆方程的比较(注意板书内容)。
②总结判断焦点位置的方法。(看大小)
③求曲线方程的方法:坐标法,步骤。
(2)布置作业
1.必做题:教材P401,2,3
2.选做题:求与圆(x—2)2+y2=1外切,且与圆(x+2)2+y2=49内切的动圆圆心的轨迹方程。
这样设计的意图是:归纳小结由学生来完成,使他们及时发现并纠正自己学习中存在的问题,培养学生学习的主动性和良好的学习习惯。作业由易到难,分必做题和选做题,体现分层教学的思想,提高学生的学习积极性,使各层次的学生都找到各自的学习区,进一步促进教学目标的实现。
五、说明
1、教育学家波利亚说得好:“学习任何知识的最佳途径即是由自己去发现,因为这种发现,理解最深刻,也最容易掌握其中的内在规律、性质和联系。”因此,我在教学时,尽力把学习主动权交给学生,让学生在自主探索中学到知识,掌握方法,提高能力。
2、在生活中找数学,用数学知识解决生活中的实际问题,体现了数学的发现和创造过程,加深了学生对数学本质的理解,激发了他们学习数学的兴趣。
3、整节课借助多媒体,利用几何画板创设意境,使得学习内容直观、生动,并巧妙的把待解决的问题转化为以前学过的问题,让学生在不知不觉中掌握了数学知识。
这就是我对本节课的设计和说明,希望大家批评指正!谢谢!
《椭圆及其标准方程》说课稿3
说教材:
1、地位及作用:
椭圆及其标准方程是高中《解析几何》第二章第七节内容,是本书的重点内容之一,也是历年高考、会考的必考内容,是在学完求曲线方程的基础上,进一步研究椭圆的特性,以完成对圆锥曲线的全面研究,为今后的学习打好基础,因此本节内容具有承前启后的作用。
2、教学目标:
根据《教学大纲》,《考试说明》的要求,并根据教材的具体内容和学生的实际情况,确定本节课的教学目标:
(1)知识目标:掌握椭圆的定义和标准方程,以及它们的应用。
(2)能力目标:
(a)培养学生灵活应用知识的能力。
(b)培养学生全面分析问题和解决问题的能力。
(c)培养学生快速准确的运算能力。
(3)德育目标:培养学生数形结合思想,类比、分类讨论的思想以及确立从感性到理性认识的辩证唯物主义观点。
3、重点、难点和关键点:
因为椭圆的定义和标准方程是解决与椭圆有关问题的重要依据,也是研究双曲线和抛物线的基础,因此,它是本节教材的重点;由于学生推理归纳能力较低,在推导椭圆的标准方程时涉及到根式的两次*方,并且运算也较繁,因此它是本节课的难点;坐标系建立的好坏直接影响标准方程的推导和化简,因此建立一个适当的直角坐标系是本节的关键。
说教材处理
为了完成本节课的教学目标,突出重点、分散难点、根据教材的内容和学生的实际情况,对教材做以下的处理:
1、学生状况分析及对策:
2、教材内容的组织和安排:
本节教材的处理上按照人们认识事物的规律,遵循由浅入深,循序渐进,层层深入的原则组织和安排如下:
(1)复习提问(2)引入新课(3)新课讲解(4)反馈练习(5)归纳总结(6)布置作业
说教法和学法
1、为了充分调动学生学习的积极性,是学生变被动学习为主动而愉快的学习,引导学生自己动手,让学生的思维活动在教师的引导下层层展开。请学生参与课堂。加强方程推导的指导,是传授知识与培养能力有机的溶为一体,为此,本节课采用引导教学法。
2、利用电脑所画图形的动态演示总结规律。同时利用电脑的动态演示激发学生的学习兴趣。
《椭圆及其标准方程》说课稿3篇扩展阅读
《椭圆及其标准方程》说课稿3篇(扩展1)
——椭圆及其标准方程教学反思3篇
椭圆及其标准方程教学反思1
这节分为两课时,第一课时主要讲解椭圆定义及标准方程的推导;第二课时主要介绍椭圆定义及其标准方程的应用。
在第一课时中我从书中的小实验出发给学生演示并重点讲解动点在运动的过程中始终保持不变的几何特征即到两个定点的距离之和为定值(绳长)并通过改变两个定点的距离让学生直观体会椭圆的圆扁度与定点距离的关系,并提出思考若绳长和定点的距离相等及大于绳长时动点的轨迹又是什么?随后通过对学生分组进行讨论及总结给出定义;我在此时结合图形强调这个定值一定要大于两个定点的距离的理由,随后提出坐标法的基本思想并带着学生回顾动点轨迹方程的一般求法然后提出问题:椭圆的方程是什么引入第二部分即标准方程的推导;在推导椭圆标准方程时重点讲清楚坐标系的建立过程,并让学生总结建系的方法及原则;在椭圆标准方程的推导过程中由于是带有两个根式的方程化简对于我们学校的学生来说基础比较弱可能从来没遇到过,因此主要通过我在黑板上的推导及演算让学生看清过程,掌握推导方法并及时对动点轨迹方程的一般求法步骤再次进行学习引导并进一步深入总结。
得到椭圆标准方程后,让学生重点分析两个问题,第一个就是课本中的探究活动,让学生在图形中找到b的几何意义,并强调a>b>0;a>c>0b,c大小关系不确定;第二个就是提出方程的建立与坐标系有关,不同的坐标系方程是不同的,引出学生对焦点在y轴上的椭圆标准方程的推导产生兴趣,并自我完成推导过程,并通过分组讨论总结完成对椭圆标准方程推导。最后通过课本例1让学生初步体会椭圆定义及标准方程的应用。
本节课的重点是椭圆的定义及标准方程的推导,难点是标准方程推导过程中的建系过程和方程化简过程。在椭圆定义的教学中我充分运用多媒体演示及课堂学生的动手试验突出椭圆定义中到两个定点的距离为什么要大于两个定点的距离;另一方面从图形出发让学生注意三角形两边之和大于第三边也可以解释;在标准方程建立的过程中建系是难点,学生很难入手,在这里我充分引导学生建系的目的是用坐标表示点,用方程表示曲线,引导学生关注两个定点的坐标及距离公式好表示,并强调建系要关注椭圆的对称性。在推导完方程后通过不同的坐标系让学生观察分析方程的推导变化进一步体会坐标系建立过程中关注点的坐标及曲线的对称性的重要性。
在方程化简过程中我同过课堂上学生自主推导焦点在y轴上的`标准方程进一步让学生自己体会化简的过程和运算技巧,让学生能初步的解决类似问题,本节课我采取做,讲,练结合,师生之间有充分互动的过程,学生能从做实验,听讲解,自主练习的过程中体会椭圆标准方程的获得过程,能够从中体会发现和发明的乐趣并对知识的产生过程有很深入的体会,真正的做到了学生为主体,教师为主导的教学理念。
椭圆及其标准方程教学反思2
任何概念的学习,如有可能,我们当然希望学生在问题情境中,在解决问题的过程中,成为催生新知的主力军。限于椭圆概念的特殊性,我对问题情境的创设,通过两个角度:从形的角度和数的角度来加以引入,实现了由学生催生新知的初衷。
椭圆的定义教学中,画出椭圆轨迹,完全是意外的惊喜,采用根据定义“先画后展”的处理方式,突显了知识主题,符合学生认知规律,推动了课堂发展,进而通过类比圆的标准方程的推导,给出椭圆的标准方程的推导步骤。椭圆方程的化简,对于学生而言是困难的,但不管怎么困难,教师也不可越俎代庖。为了突破这个难点,我们在曲线与方程的教学过程中,引导学生小组合作进行化简,并进行了实际操作。在课堂上,督促学生运用既有策略进行独立的推导化简,通过巡视,指导仍有困难者,训练学生的代数运算能力。此处的训练对于增强学生的自信和毅力有着重要的意义。
类比学习方法是本节课的主线,而数形结合又是本节课的主调,解析法则是本节课的主要原理方法。
另外,以后的教学中,应该更多的加强学生合作探究的能力,减少教师的讲解,从而能为学生提供更多的合作机会。
椭圆及其标准方程教学反思3
椭圆及其标准方程这节分为两课时,第一课时主要讲解椭圆定义及标准方程的推导;第二课时主要介绍椭圆定义及其标准方程的应用。
在第一课时中我从书中的小实验出发给学生演示并重点讲解动点在运动的过程中始终保持不变的几何特征即到两个定点的距离之和为定值(绳长)并通过改变两个定点的距离让学生直观体会椭圆的圆扁度与定点距离的关系,并提出思考若绳长和定点的距离相等及大于绳长时动点的轨迹又是什么?随后通过对学生分组进行讨论及总结给出定义;我在此时结合图形强调这个定值一定要大于两个定点的距离的理由,随后提出坐标法的基本思想并带着学生回顾动点轨迹方程的一般求法然后提出问题:椭圆的方程是什么引入第二部分即标准方程的推导;在推导椭圆标准方程时重点讲清楚坐标系的建立过程,并让学生总结建系的方法及原则;在椭圆标准方程的推导过程中由于是带有两个根式的方程化简对于我们学校的学生来说基础比较弱可能从来没遇到过,因此主要通过我在黑板上的推导及演算让学生看清过程,掌握推导方法并及时对动点轨迹方程的一般求法步骤再次进行学习引导并进一步深入总结。
得到椭圆标准方程后,让学生重点分析两个问题,第一个就是课本中的探究活动,让学生在图形中找到b的几何意义,并强调a>b>0;a>c>0b,c大小关系不确定;第二个就是提出方程的建立与坐标系有关,不同的坐标系方程是不同的,引出学生对焦点在y轴上的椭圆标准方程的推导产生兴趣,并自我完成推导过程,并通过分组讨论总结完成对椭圆标准方程推导。最后通过课本例1让学生初步体会椭圆定义及标准方程的应用。
本节课的重点是椭圆的定义及标准方程的推导,难点是标准方程推导过程中的建系过程和方程化简过程。在椭圆定义的教学中我充分运用多媒体演示及课堂学生的动手试验突出椭圆定义中到两个定点的距离为什么要大于两个定点的距离;另一方面从图形出发让学生注意三角形两边之和大于第三边也可以解释;在标准方程建立的过程中建系是难点,学生很难入手,在这里我充分引导学生建系的目的是用坐标表示点,用方程表示曲线,引导学生关注两个定点的坐标及距离公式好表示,并强调建系要关注椭圆的对称性。在推导完方程后通过不同的坐标系让学生观察分析方程的推导变化进一步体会坐标系建立过程中关注点的坐标及曲线的对称性的重要性。
在方程化简过程中我同过课堂上学生自主推导焦点在y轴上的标准方程进一步让学生自己体会化简的过程和运算技巧,让学生能初步的解决类似问题,本节课我采取做,讲,练结合,师生之间有充分互动的过程,学生能从做实验,听讲解,自主练习的过程中体会椭圆标准方程的获得过程,能够从中体会发现和发明的乐趣并对知识的产生过程有很深入的体会,真正的做到了学生为主体,教师为主导的教学理念。
《椭圆及其标准方程》说课稿3篇(扩展2)
——《抛物线及其标准方程》教案3篇
《抛物线及其标准方程》教案1
一、目标
1.掌握抛物线的定义、几何图形,会推导抛物线的标准方程
2.能够利用给定条件求抛物线的标准方程
3.通过“观察”、“思考”、“探究”与“合作交流”等一系列数学活动,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,使学生学会数学思考与推理,学会反思与感悟,形成良好的数学观。并进一步感受坐标法及数形结合的思想
二、重点
抛物线的定义及标准方程
三、教学难点
抛物线定义的形成过程及抛物线标准方程的推导(关键是坐标系方案的选择)
四、教学过程
(一)复习旧知
在初中,我们学习过了二次函数,知道二次函数的图象是一条抛物线。
例如:(1),(2)的图象(展示两个函数图象):
(二)讲授新课
1.课题引入
在实际生活中,我们也有许多的抛物线模型,例如1965年竣工的密西西比河河畔的萨尔南拱门,它就是用不锈钢铸成的抛物线形的建筑物。到底什么样的曲线才可以称做是抛物线?它具有怎样的几何特征?它的方程是什么呢?
这就是我们今天要研究的内容.(板书:课题2.4.1抛物线及其标准方程)
2.抛物线的定义
信息技术应用(课堂中展示画图过程)
先看一个实验:
如图:点F是定点,是不经过点F的定直线,H是上任意一点,过点H作,线段FH的垂直*分线交MH于点M。拖动点H,观察点M的轨迹,你能发现点M满足的几何条件吗?(学生观察画图过程,并讨论)
可以发现,点M随着H运动的过程中,始终有MH=MF,即点M与定点F和定直线的距离相等。(也可以用几何画板度量MH,MF的值)
(定义引入):
我们把*面内与一个定点F和一条定直线(不经过点F)距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线叫做抛物线的准线。(板书)
思考?若F在上呢?(学生思考、讨论、画图)
此时退化为过F点且与直线垂直的一条直线.
3.抛物线的标准方程
从抛物线的定义中我们知道,抛物线上的点满足到焦点F的距离与到准线的距离相等。那么动点的轨迹方程是什么,即抛物线的方程是什么呢?
要求抛物线的方程,必须先建立直角坐标系。
问题设焦点F到准线的距离为,你认为应该如何选择坐标系求抛物线的方程?按照你建立直角坐标系的方案,求抛物线的方程。
(引导学生分组讨论,回答,并不断补充常见的几种建系方法,叫学生应用投影仪展示计算结果)
注意:
1.标准方程必须出来,此表格在黑板上板书。
2.若出现比较复杂建系方案,可以以引入的字母参数较多为由,先排除计算。
3.强调P的意义。
4.教师说明曲线方程与方程的曲线:从上述过程可以看到,抛物线上任意一点的坐标都满足方程,以方程的解为坐标的点到抛物线的焦点的距离与到准线的距离相等,即方程的解为坐标的点都在抛物线上。所以这些方程都是抛物线的方程。
(选择标准方程)
师:观察4(3)个建系方案及其对应的方程,你认为哪种建系方案使方程更简单?
(学生选择,说明1.对称轴2.焦点3.方程无常数项,顶点在原点)
推导过程:取过焦点F且垂直于准线l的直线为x轴,x轴与l交于K,以线段KF的垂直*分线为y轴建立直角坐标系,如右图所示,则有F(,0),l的方程为x=—。
设动点M(x,y),由抛物线定义得:
化简得y2=2px(p>0)
师:我们把方程叫做抛物线的标准方程,它表示的抛物线的焦点坐标是,准线方程是。
师:在建立椭圆、双曲线的标准方程的过程中,选择不同的坐标系得到了不同形式的标准方程,对于抛物线,当我们选择如图三种建立坐标系的方法,我们也可以得到不同形式的抛物线的标准方程:
(学生分前两排,中间两排,后面两排三组分别计算三种情况,一起填充表格)
图形标准方程焦点坐标准线方程
y2=2px(p>0)
(,0)
x=—
y2=—2px(p>0)
(—,0)
x=
x2=2py(p>0)
(0,)
y=—
x2=—2py(p>0)
(0,—)
y=
(三)例题讲解
例1(1)已知抛物线的标准方程是,求它的焦点坐标和准线方程,
(2)已知抛物线的焦点是,求它的标准方程.
解:(1)∵抛物线方程为y2=6x
∴p=3,则焦点坐标是(,0),准线方程是x=—.
(2)∵焦点在y轴的负半轴上,且=2,∴p=4
则所求抛物线的标准方程是:x2=—8y.
变式训练1:
(1)已知抛物线的准线方程是x=—,求它的标准方程.
(2)已知抛物线的标准方程是2y2+5x=0,求它的焦点坐标和准线方程.
解(1)∵焦点是F(0,3),∴抛物线开口向上,且=3,则p=6
∴所求抛物线方程是x2=12y
(2)∵抛物线方程是2y2+5x=0,即y2=—x,∴p=[高考XK]
则焦点坐标是F(—,0),准线方程是x=
例2点M与点F(4,0)的距离比它到直线l:x+5=0的距离小1,求点M的轨迹方程.
解:如右图所示,设点M的坐标为(x,y)
由已知条件可知,点M与点F的距离等于它到直线x+4=0的距离.根据抛物线的定义,点M的轨迹是以F(4,0)为焦点的抛物线.
∵=4,∴p=8
因为焦点在x轴的正半轴上,所以点M的轨迹方程为y2=16x.
变式训练2:
在抛物线y2=2x上求一点P,使P到焦点F与到点A(3,2)的距离之和最小.
解:如下图所示,设抛物线的点P到准线的距离为PQ
由抛物线定义可知:PF=PQ
∴PF+PA=PQ+PA
显然当P、Q、A三点共线时,PQ+PA最小.
∵A(3,2),可设P(x0,2)代入y2=2x得x0=2
故点P的坐标为(2,2).
(四)小结
1、抛物线的定义;
2、抛物线的四种标准方程;
3、注意抛物线的标准方程中的字母P的几何意义.
《抛物线及其标准方程》教案2
知识目标:
1、掌握抛物线的定义和标准方程。
2、能根据抛物线的标准方程,写出它的焦点坐标和准线方程。
能力目标:
能根据简单的已知条件求抛物线的标准方程。
情感目标:
能根据老师的引导积极探索问题的规律。
教学重点:
分清抛物线四种标准方程、焦点坐标和准线方程。
教学难点:
利用抛物线的定义探索解决一些新问题。
教学方法及手段:
启发引导
教学过程:
一、课程引入
1、*面内与两个定点的距离相等的点的轨迹是什么?
2、与两条相交直线的距离相等的点的轨迹是什么?
问:与一个定点和一条定直线的距离相等的点的轨迹是什么?(学生探索)
教师flash课件演示(解释原理)
二、新课解析
1、定义:(板书课题)
*面内与一个定点F和一条定直线L的距离相等的点的轨迹是抛物线。点F叫做抛物线的焦点。直线L叫抛物线的准线。
生活中的抛物线有哪些?太阳灶,抛射物体的运行轨道,二次函数的图象等。
但在二次函数中研究的抛物线,它的对称轴是*行于y轴、开口向上或开口向下两种情形.如果抛物线的.对称轴不*行于y轴,那么就不能作为二次函数的图象来研究了.今天,我们突破函数研究中这个限制,从更一般意义上来研究抛物线.
2、推导抛物线的标准方程:(先复习求轨迹方程的方法和步骤;如何建系)
建立直角坐标系系,设|KF|=(>0),那么焦点F的坐标为,准线的方程为,设抛物线上的点M(x,y),则有化简方程得
3、抛物线标准方程:
方程叫做抛物线的标准方程
它表示的抛物线的焦点在x轴的正半轴上,焦点坐标是F(,0),它的准线方程是说明:抛物线,由于它在坐标系的位置不同,方程也不同,有四种不同的情况。这四种抛物线的图形、标准方程、焦点坐标以及准线方程如下
图形
方程
焦点
准线
相同点:
(1)抛物线都过原点;
(2)对称轴为坐标轴;
(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称p是焦点到准线的距离
不同点:标准方程中一次项的变量决定焦点在哪条轴上,系数的”+”,”-”决定焦点在正半轴还是负半轴
三、例题精讲
例1:
(1)已知抛物线标准方程是,求它的焦点坐标和准线方程;
(2)已知抛物线的方程是y=-6×2,求它的焦点坐标和准线方程;
(3)已知抛物线的焦点坐标是F(0,-2),求它的标准方程。
例2:求经过点A(-3,2)的抛物线的标准方程。
思考题:(选做)
M是抛物线y2=2px(P>0)上一点,若点M的横坐标为X0,则点M到焦点的距离是?
四、课堂练习
1、根据下列条件,写出抛物线的标准方程:
(1)焦点是F(3,0);
(2)准线方程是x=-
(3)焦点到准线的距离是2。
2、求下列抛物线的焦点坐标和准线方程:
(1)y2=20x(2)x2=y(3)x2+8y=0
(选做)
3、点M与点F(4,0)的距离比它到直线的距离小1,求点M的轨迹方程
五、课堂小结
1、抛物线定义
2、抛物线四种形式的标准方程和图像;焦点准线的判定
3、求标准方程的方法(1)定义法;(2)待定系数法
六、作业布置
学案反面《课后作业》
七、教学设计说明
(1)建立坐标系是坐标法的思想基础,但不同的建立方式使所得的方程繁简不同,布置学生自己写出推导过程并与课文对照可以培养学生动手能力、自学能力,提高教学效果,进一步明确抛物线上的点的几何意义。
(2)猜想是数学问题解决中的一类重要方法,请同学们根据推导出的(1)的标准方程猜想其它几个结论,非常有利于培养学生归纳推理或类比推理的能力,帮助他们形成良好的直觉思维—数学思维的一种基本形式另外让学生推导和猜想出抛物线标准方程所有的四种形式,也比老师直接写出这些方程给学生带来的理解和记忆的效果更好。
(3)对四种抛物线的图形、标准方程、焦点坐标以及准线方程进行完整的归纳小结,让学生通过对比分析全面深刻地理解和掌握它们。
《椭圆及其标准方程》说课稿3篇(扩展3)
——《抛物线及其标准方程》说课稿3篇
《抛物线及其标准方程》说课稿1
教学目标
(1)知识目标:掌握抛物线的定义,掌握抛物线的四种标准方程形式,及其对应的焦点、准线。
(2)能力目标:通过对抛物线概念和标准方程的学习,培养学生分析和概括的能力,提高建立坐标系的能力,由圆锥曲线的统一定义,形成学生对事物运动变化、对立、统一的辨证唯物主义观点。
(3)德育目标:通过抛物线概念和标准方程的学习,培养学生勇于探索、严密细致的科学态度,通过提问、讨论、思考等教学活动,调动学生积极参与教学,培养良好的学习习惯。
教学重点:(1)抛物线的定义及焦点、准线;
(2)利用坐标法求出抛物线的四种标准方程;
(3)会根据抛物线的焦点坐标,准线方程求抛物线的标准方程。
教学难点:(1)抛物线的四种图形及标准方程的区分;
(2)抛物线定义及焦点、准线等知识的灵活运用。
教学方法:启发引导法(通过椭圆与双曲线第二定义引出抛物线)。
依据建构主义教学原理,通过类比、归纳把新知识化归到原有的认知结构中去(二次函数与抛物线方程的对比,移图与建立适当建立坐标系的方法的归纳)。
利用多媒体教学
教学过程:
一、课题引入
利用学生已有知识提问学生:1、椭圆的第二种定义:到定点与到定直线的距离的比是小于1的常数的点的轨迹是椭圆。(用课件演示)
2、双曲线的第二种定义:到定点与到定直线的距离的比是大于1的常数的点的轨迹是双曲线。(用课件演示)
由此引出:到定点的距离和到定直线的距离的比是等于1的常数的点的"轨迹
是什么?
(以问题为出发点,创设情景,提高学生求知欲)
教师用直尺、三角板和细绳演示,学生观察所得曲线。
从而引出本节课的学习内容。
二、讲授新课
1.对抛物线的初步认识
物理中抛物线的运动轨迹;数学中二次函数的图象;生活中抛物线的实例(图片显示)等。
2.抛物线的定义
3.抛物线标准方程的推导:①学生回顾求曲线方程的步骤(建系、设点、列方程);
②若焦点f和准线的距离为这样建立坐标系?由学生思考:可能出现的结果:
四、课堂小结
1、本节课的内容:抛物线的定义,焦点、准线的意义及四种标准方程;
2、理解参数的几何意义(焦准距)
3、利用坐标法求曲线方程是坐标系的适当选取。
课后作业:119页习题8.52,4
设计说明:学生在初中学习二次函数时知道二次函数的图象是一个抛物线,在物理的学习中也接触过抛物线(物体的运动轨迹)。因而对抛物线的认识比对前面学习的两种圆锥曲线椭圆和双曲线更多。所以学生学起来会轻松。但是要注意的是,现在所学的抛物线是方程的曲线而不是函数的图象。本节内容是在学习了椭圆和双曲线的基础上,利用圆锥曲线的第二定义统一进行展开的,因而对于抛物线的系统学习具有双重的目标性。
抛物线作为点的轨迹,其标准方程的推导过程充满了辨证法,处处是数与形之间的对照和相互转化。而要得到抛物线的标准方程,必须建立适当的坐标系,还要依赖焦点和准线的相互位置关系,这是抛物线标准方程有四种而不象椭圆和双曲线只有两种形式。因而抛物线的标准方程的推导也是培养辨证唯物主义观点的好素材。
利用圆锥曲线第二定义通过类比方法,引导学生观察和对比,启发学生猜想与概括,利用建立坐标系求出抛物线的四种标准方程,让每一个学生都能动手,动口,动脑参与教学过程,真正贯彻“教师为主导,学生为主体”的教学思想。对于标准方程中的参数及其几何意义,焦点坐标和准线方程与的关系是本节课的重点内容,必须让学生掌握如何根据标准方程求、焦点坐标、准线方程或根据后三者求抛物线的标准方程。特别对于一些有关距离的问题,要能灵活运用抛物线的定义给予解决。
当前素质教育的主流是培养学生的能力,让学生学会学习。本节课采用学生通过探索、观察、对比分析,自己发现结论的学习方法,培养了学生逻辑思维能力,动手实践能力以及探索的精神。
《椭圆及其标准方程》说课稿3篇(扩展4)
——《抛物线及其标准方程》教学反思3篇
《抛物线及其标准方程》教学反思1
周四我讲了《抛物线及其标准方程》一课,讲完这节课后,积极主动地请教各听课老师,聆听他们的意见,还有第三节课后李校长、王校长、程主任、房主任的点评,虽然没有针对我的课进行点评,但我还是觉得受益颇深,我心想领导们指点的这些,好多也是我课堂上很应该注意和改进的,下面就将本节课的反思总结一下:
这节课的备课我感受最深的就是老师们对我的帮助,在备这节课前,我请教了臧老师、徐老师、韩老师,她们对我上好这节课提出好多实实在在的宝贵意见,让我从自己备课这个小圈子里扩展到我力所不能及的大圈子里面,因为年纪轻、教学经验不足,好多不到之处请老师一指点之后恍然大悟,上课自然顺彻很多,很感谢老师们的帮助和指点。
这节课我用课件讲的抛物线,其实比较重要的一点是能用几何画板来比较形象的演示抛物线的生成过程,学生好接受、我也好表达,然后学生们自己在下面建系、做题,我用投影仪展示,一可以让学生很好的参与课堂,再就是不用再在黑板上写一遍,能减少不必要的时间耗费,增加课堂容量,再一个就是小组讨论,先学生们一起学后教,一开始小组成员有一半会的,通过同学的讲解小组的每个同学就都会了,这样老师也安心,不用怕有学生不会,学生也开心,因为他学会了知识。最后老师和学生们一起进行总结,点出来重点、本质。在这里的不足就是在小组讨论之前,我没有给同学们充分的自己思考的时间而是很快的进入了小组讨论,应该让学生有自主学习的时间,然后小组讨论,先学后教。班级授课,共同成长。
对于小组,现在我完全是依靠组员的自觉和小组长的责任心,听了王校长的指点,我认识到我的不足,我应该经常性的评优秀小组,让小组代言人代表本组的水*,让他们有集体荣誉感,能很好的带动学生们的积极性。
在课堂上让学生们做的题要具有代表性,并且难度要考虑全体同学,全体都能做完,昨天领导们在这里指点了一个地方我理解为“小组内要有和老师‘一路’的人”,如果有同学没完成老师布置的任务,老师一定能够知道才好,不能学生的完成情况和老师的了解情况中间脱节。这一个我应该好好去想想,用用心,每一组培养1~2人,常和老师沟通,并且能带领大家按时按量的完成老师布置的任务,不让任何一个学生当课堂的旁观者,一节课下来,一定要学到知识,比上课之前要有进步,程度差的可以少进步些,程度好点的进步的.大一些,但总是要有所收获的才行。什么是高效,昨天李校长的一语点醒了我,高效不是一节课讲的多,而是在等时间内学生所接受所学会的东西多,一节课讲一道题如果学生都会了也比一节课讲十道题学生迷迷糊糊要强的多。讲完之后要再落实一下,看看学生是不是真会了,他自己做能不能做出来,再做一遍,会了吗?
这节课,我采取会的学生主动去讲台讲题,有个别学生数学比较有优势,所以更积极一些,一些想去又不大有信心的同学这时候就没有机会上台展示,信心就更不好培养了,同一个人上讲台的次数太多,没有照顾到全体学生。以后,我认为这时候老师就要有意识的看看班里的情况,看看那些想上去又不大有信心的同学,点名让他们去讲台展示。
这节课的整体感觉就是节奏自己掌控的不够好,还有就是对教材还是不是特别熟悉,学生猛然的课堂提问,我一时答不上来,于是当时反应就是让同学们以课后讨论的形式解决这个问题,其实我应该再对教材多加研究,多加熟悉,这样也能让自己的自信心提升,也能更好的把握课堂节奏,知道哪里该放的时间长一些哪里放的短一些。还有就是备好教材,备好教师之后要用心思去备学生,站在学生的角度去想,这一部分题哪些需要多强调,需要怎么去讲才能明白,怎么样才能落实到学生的笔上,他们会运用知识,会做题。这些都是我应该去用心考虑,用心去想的。
《抛物线及其标准方程》教学反思2
1、问题——创设质疑,引发兴趣
本节课为了引入抛物线的定义,创造学生主动探究抛物线定义的情境,课堂是从学生所熟悉的二次函数的图象开始的,还有投篮的FLASH展示,并欣赏了生活中的抛物线模型图片及著名的萨尔南拱门。特别是通过赵州桥的拱底不是抛物线,引起学生的好奇心,激发学生研究的热情。让学生回到自然与社会中来,亲自体验到真理的发现与实现过程,深深感觉到数学来源于生活。在这个引入的过程中互动方式有师生互动,人机互动。
2、发散——提供线索,引起讨论
在发现问题后,利用几何画板的演示,使学生发现形成轨迹动点的几何特征,进而得出定义。为了使课堂教学行为趋于多重整合,把学生分成活动小组,对探究过程中出现的问题进行讨论研究。这一过程培养学生勇于探究的精神和与人协作的能力,使学生真正做学习的主人。在课堂学习过程中,教师是学习活动的组织者,探究情境的创造者,探究活动的引导者,既要对学生的讨论给予引导,又要对出现的问题进行点拨。为了使实际操作和对问题的数学讨论卓有成效,课堂教学氛围民主、和谐和开放,学生的思维始终处于活跃状态,教学过程中我设置了很多引导性的问题,如“抛物线是满足什么几何条件的点的集合”,“怎么建立坐标系求抛物线的标准方程”,“大家讨论出的三种建系方案所对应的方程那种更加简单”,“四种标准方程内在联系是什么”等。在这样的教学模式下,学生各抒己见,合作学习,学会从数学的角度发现问题和提出问题,在与他人合作和交流的过程中,客观的理解他人的思考方法和结论,体验获得成功的乐趣,建立学好数学的自信心。这一过程中的互动方式是师生互动,生生互动,人机互动
3、收敛——规范要求,引控方向
收敛与发散是相辅相成,互为促进的。探究式学习并不是完全放手让学生去研究,为了能完成有效的教学目标,教师要在知识的形成阶段规范要求,引控方向。所以,探究的每一阶段均离不开教师的组织,教师为学生创设情境,调节控制学生的探究活动,教师的教学组织促进学生的探究深化;同时,学生的探究进程要求教师指导、提示、组织、引导。在引导学生归纳抛物线的定义和坐标法求抛物线的标准方程,及对四种标准方程进行规律分析的过程中,我一方面提示学生去思考、讨论和表达,一方面对学生的结论进行剖析、评价和指正。比如在比较四种标准方程的规律分析中,首先提供线索指导学生进行发散式讨论,如从图形、系数、坐标轴、正负值、对称性等入手思考,以明确问题的指向性,其次在学生讨论不完善的情况下,表明自己的看法与学生的思维发生碰撞,帮助学生修正自己的见解。互动方式是师生互动,生生活动。
4、综合——启发深入,引导探究
综合教学过程,要求学生对探究结论进行综合概括,形成知识之间的关系网络,使知识与知识之间,不同学科知识之间,数学知识与现实生活之间建立联系,将探究结论进行综合组织,并纳入自己的数学认知结构中。比如,在推导得到开口向右的抛物线标准方程后,由学生分组探究完成如下两个问题:一是写出另外三种抛物线的标准方程,焦点坐标和准线方程;二是寻求它们的内在联系,并总结记忆。这是数学探究课的中间层次,教师给出简要的过程提示和大致要求,对学生的结论可以不加限制,既做到理顺问题,尝试结论,又给学生留下一定的思维空间。互动方式是师生互动,人机互动,学生与教材互动。
5、创造——诱导点拨,引入验证
这是一个概念的深化过程,先通过一道例题应用所学知识点,再根据本节内容设置课堂练习,要求学生综合运用各知识点加以解决,提高学生综合能力。本节课设置了4道课堂练习,针对抛物线的标准方程,焦点坐标和准线方程,考察学生对解题方法的运用与数学思想的把握,对探究结论有一个质的飞跃。至此,圆满完成本节课先由形到数,再由数到形,最终达到数与形的完美结合这一指导实际生活的教学任务。互动方式是师生互动,生生互动,人机互动。
《抛物线及其标准方程》教学反思3
周四我讲了《抛物线及其标准方程》一课,讲完这节课后,积极主动地请教各听课老师,聆听他们的意见,还有第三节课后李校长、王校长、程主任、房主任的点评,虽然没有针对我的课进行点评,但我还是觉得受益颇深,我心想领导们指点的这些,好多也是我课堂上很应该注意和改进的,下面就将本节课的反思总结一下:
这节课的备课我感受最深的就是老师们对我的帮助,在备这节课前,我请教了臧老师、徐老师、韩老师,她们对我上好这节课提出好多实实在在的宝贵意见,让我从自己备课这个小圈子里扩展到我力所不能及的大圈子里面,因为年纪轻、教学经验不足,好多不到之处请老师一指点之后恍然大悟,上课自然顺彻很多,很感谢老师们的帮助和指点。
这节课我用课件讲的抛物线,其实比较重要的一点是能用几何画板来比较形象的演示抛物线的生成过程,学生好接受、我也好表达,然后学生们自己在下面建系、做题,我用投影仪展示,一可以让学生很好的参与课堂,再就是不用再在黑板上写一遍,能减少不必要的时间耗费,增加课堂容量,再一个就是小组讨论,先学生们一起学后教,一开始小组成员有一半会的,通过同学的讲解小组的每个同学就都会了,这样老师也安心,不用怕有学生不会,学生也开心,因为他学会了知识。最后老师和学生们一起进行总结,点出来重点、本质。在这里的不足就是在小组讨论之前,我没有给同学们充分的自己思考的时间而是很快的进入了小组讨论,应该让学生有自主学习的时间,然后小组讨论,先学后教。班级授课,共同成长。
对于小组,现在我完全是依靠组员的自觉和小组长的责任心,听了王校长的指点,我认识到我的不足,我应该经常性的评优秀小组,让小组代言人代表本组的水*,让他们有集体荣誉感,能很好的带动学生们的积极性。
在课堂上让学生们做的题要具有代表性,并且难度要考虑全体同学,全体都能做完,昨天领导们在这里指点了一个地方我理解为“小组内要有和老师‘一路’的人”,如果有同学没完成老师布置的任务,老师一定能够知道才好,不能学生的完成情况和老师的了解情况中间脱节。这一个我应该好好去想想,用用心,每一组培养1~2人,常和老师沟通,并且能带领大家按时按量的完成老师布置的任务,不让任何一个学生当课堂的旁观者,一节课下来,一定要学到知识,比上课之前要有进步,程度差的可以少进步些,程度好点的进步的"大一些,但总是要有所收获的才行。什么是高效,昨天李校长的一语点醒了我,高效不是一节课讲的多,而是在等时间内学生所接受所学会的东西多,一节课讲一道题如果学生都会了也比一节课讲十道题学生迷迷糊糊要强的多。讲完之后要再落实一下,看看学生是不是真会了,他自己做能不能做出来,再做一遍,会了吗?
这节课,我采取会的学生主动去讲台讲题,有个别学生数学比较有优势,所以更积极一些,一些想去又不大有信心的同学这时候就没有机会上台展示,信心就更不好培养了,同一个人上讲台的次数太多,没有照顾到全体学生。以后,我认为这时候老师就要有意识的看看班里的情况,看看那些想上去又不大有信心的同学,点名让他们去讲台展示。
这节课的整体感觉就是节奏自己掌控的不够好,还有就是对教材还是不是特别熟悉,学生猛然的课堂提问,我一时答不上来,于是当时反应就是让同学们以课后讨论的形式解决这个问题,其实我应该再对教材多加研究,多加熟悉,这样也能让自己的自信心提升,也能更好的把握课堂节奏,知道哪里该放的时间长一些哪里放的短一些。还有就是备好教材,备好教师之后要用心思去备学生,站在学生的角度去想,这一部分题哪些需要多强调,需要怎么去讲才能明白,怎么样才能落实到学生的笔上,他们会运用知识,会做题。这些都是我应该去用心考虑,用心去想的。
《椭圆及其标准方程》说课稿3篇(扩展5)
——《解简易方程》说课稿3篇
《解简易方程》说课稿1
一、教材分析
1、教材的地位与作用
本节课是解简易方程的第一课时,是在学生学习的四则运算及四则运算各部分间的关系和等式的性质的基础上进行教学。而今天学习的内容又为后面学习解方程和列方程解应用题做准备。今后学习分数应用题、几何初步知识、比和比例等内容时都要直接运用。所以本节课起着一个承上启下的作用,是教材中必不可少的组成部分,是一个非常重要的基础知识,所以它又是本章的重点内容之一。
2、教学目标的确定
根据学生已有的认知基础和教材的地位与作用,参照课标确定本节课的目标:
(1)敝道解方程的意义和基本思路。
(2)被嵩擞檬量关系式或等式的基本性质对解方程的过程进行语言表述。
(3)被岫跃咛宸匠痰慕夥ㄌ岢鲎约航獯鸬姆桨福并能与同学交流。
(4)被岫懒⒌亟獯鹨弧⒍步方程。
(5)蹦芄谎樗惴匠痰慕獾恼确性。
3、教学重点、难点、关键点
根据教材内容和教学目标,我认为本节课的重难点是解方程的两种方法及检验,解决重难点的关键是帮助学生确立解方程的一般思路。
二、说教法
1.演示操作法
借助媒体,激发学生的学习兴趣
2.观察法
为了体现学生的主体性,培养学生的合作意识,通过四人合作、交流,自主探寻发现通过等量关系来列方程。
这些教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主地,充满自信地学习数学,
三、说学法
1、合作学习法
采用小组合作学习的形式,让学生经历一个观察、比较、交流、分析等过程,鼓励学生把发现的规律都说出来,有利于学生口语交际和解决问题能力的发展,这样既培养学生的合作意识,又能使学生在发现规律的同时获得成功的体验。
2、自主学习法
以学生自主学习为主,注重探索过程的教学,充分发挥学生的主观能动性,变被动听为自主学,学生积极动脑去思考、动口去表达。通过交流、猜测、验证、总结归纳,体验探索规律的过程,突破难点,提高效率。
四、过程分析
本节课我准备按以下几个环节进行教学:
(一)复习铺垫
巩固方程及等式的性质,为下面的学习做好铺垫。
(二)走进新课
1被慵问题,寻找出路
用问题来提高学生的学习兴趣、探究的热情。
2苯饩鑫侍猓形成方法(例1教学)
先通过学生仔细观察,回答下面的问题,把学生推向主*置:
①你发现了哪些数学信息?
②能根据数学信息说出等量关系吗?
③请大家根据等量关系列出方程。
④这个方程的解是多少?你是根据什么得到的?
然后组内交流,班内展示,统一方法与答案。
①解方程的格式(先提行,写下一个“解”字;为了美观,尽量使等号对齐,两边写式子。);
②解方程的依据(等式的性质或四则运算各部分间的关系);
③自觉检验。
尝试练习:写出求解的过程和验算的过程,不会的可以问问同学和老师。
出示:20+x=30。
3崩啾韧乒悖深化探究。教学例2
学生写完后,互相交流,老师一一展示各组的解方程过程
方法一:解3y-8=13方法二:解3y-8=13方法三:解3y-8=13
3y=13+83y-8-8=13-83y-8+8=13+8
3y=213y=53y=21
y=21÷3&
nbsp;3y×3=5×33y÷3=21÷3
y=7y=15y=7
验算3×7-8=21验算3×7-8=21
通过学生的自主探究,在学习方法的同时辨析渗透检验的重要性,培养学生自觉检验的习惯。
(三)练习巩固
强化重点,巩固新知,培养学生良好的学习习惯。
(四)回顾总结
梳理知识形成完整知识体系
(五)课堂检测
对所学知识进行检测,查缺补漏。
(六)布置作业
《解简易方程》说课稿2
一 、说教材
1。说课内容
《解简易方程》是九年义务教育人教版小学数学第九册第四单元第二节的教学内容。
2。教学内容的地位、作用和意义 本节课的主要内容是方程的定义和应用等式性质解方程,它起着承前启后的作用。从知识结构上看,本节课是在学生学习了一定的算术知识和已具有初步的代数知识的基础上进行教学,教学这一部分内容有助于培养学生抽象思维能力,也是培养学生抽象概括能力的过程,为以后学习解稍复杂的方程和列方程解答应用题打下良好的基础。
3。教学目标
结合教材特点和学生实际,我制定了本课的教学目标:
⑴知识与技能:初步理解“方程的解”和“解方程”的意义,并能进行辨析,并会应用等式性质解答简易方程。
⑵过程与方法:通过讨论和辨析,帮助学生理解方程的解和解方程的意义,进一步提高学生比较、分析和概括的能力。
⑶情感、态度与价值观:关注由具体到一般的抽象概括过程,培养学生初步的代数思想。
4。教学重点、难点 (1)比较方程的解和解方程这两个概念的含义。 (2)掌握解方程的方法。
二 、说教法
这节课,我主要采用 “ 直观教学法 ” 、 “ 演示操作法 ” 、 “ 观察法 ” 等教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主地,充满自信地学习数学,*等交流各自对数学的理解,并通过相互合作共同解决所面临的问题。我设计了如下三个方面的教学手段:
1 、用直观的操作和演示,让每位学生在动手操作的过程中理解和归纳出结论。
2 、恰当运用现代教学手段,突出重点突破难点,努力促进本节课教学目标的实现。
3 、充分利用身边的事物,创设情境,激发兴趣,让学生能在轻松、愉快而且有趣的氛围中理解、掌握知识。
三 、说学法
为了使学生获取 “解方程” 这部分的知识,在课堂教学中,我注重学生学习知识的过程,给学生充分的时间和空间,在特定的数学活动中自主探究、合作交流,激发学生的学习积极性,增强学生学习知识的自信心。让学生动眼观察,动手操作,动脑思考,动口表达,真正理解和掌握方程最基本的知识,培养学生探索、发现和创新能力。
四 、说教学过程
课堂教学是教学的主渠道,根据教学要求为实施教学计划突破教学的重、难点,我将教学过程分为以下四个步骤。 (一)激趣导入,动手操作
针对 “解方程” 这节课的特点以及结合小学生的年龄特征,上课开始,我借助多媒体,激发学生的学习兴趣。出示天*,杯子,水,然后提问学生:利用这些工具,你能称出一杯水的重量吗?分组讨论后,点名让学生说说他的想法并展示操作的过程,我再借助课件出示学生说的方法,紧接着让学生利用上节课学习的“天*保持*衡的规律”列方程,从复习天*保持*衡的道理入手,引出课题,引导学生质疑,有利于激发学生主动探究、深入学习的积极性。
(二)探究新知,理解归纳
1、概念教学:认识“方程的解”和“解方程”的两个概念
让学生分组讨论猜一猜x的值是多少,然后我随着学生的回答演示课件。根据学生的回答和课件的演示引出概念————方程的解和解方程,同时出示这两个概念的含义。接着抛出问题让学生独立思考,再组内交流:“方程的解”和“解方程”的两个解有什么不同?根据学生的回答总结出:“方程的解”的解,它是一个数值;“解方程”的解,它是一个演变过程。这样的设计目的在于通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。
2、教学例1
借助课件出示例1,然后让学生独立思考该怎么根据题意列方程,之后分组讨论,汇报求解的过程,我再借助多媒体演示,同时根据学生的回答补充、强调一些细节问题,比如解方程的格式、要验算等等。我的设计意图:自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。
3、拓展延伸
课件显示:解方程 x—2=15, 提示学生这是一个减法的方程,能根据我们学习的加法方程的步骤来解吗?指名学生到黑板上做,然后我再点评,补充强调细节问题。通过这道例题,学生对解简易方程就有一个比较全面的认识。
4、归纳小结 解方程的步骤: (1)先写“解:”。
(2)方程左右两边同时加或减一个相同的数(0除外),使方程左边只剩X,方程左右两边相等。 (3)求出X的值。 (4)验算。 (三)巩固深化,拓展思维
1 、基础性练习: P57“做一做” 2 、综合练习: 练习十一第2题
安排这两层练习,目的是让学生掌握方程的解和解方程这两个概念的不同以及解方程的方法,同时教师也能及时反馈学生的信息,给予当堂指导。 (四)归纳总结,布置作业 1、归纳总结
这节课,你学懂了什么知识?还有什么疑问?这样的设计概括了整节课的主要知识点,而且体现了教师始终把学生放在主体地位,为学生提供了一个自己去想去说,去回味知识掌握过程的"舞台,这样将更有助于学生掌握正确的学习方法,为今后学习解方程和列方程解答应用题作好铺垫。 2、布置作业
用x 30 60 18自己设计一道方程,并且求方程的解。
布置这题作业,目的是让学生自主设计练习,进行再创造,发展学生思维、培养学生的创造能力。
《椭圆及其标准方程》说课稿3篇(扩展6)
——圆的标准方程教学反思 (菁选3篇)
圆的标准方程教学反思1
《圆的标准方程》教学反思使用分层教学这一方法教学已有半年之久,整体课堂无论从课堂参与度还是课堂教学效果都有了明显提高。更让我高兴的是学生的数学成绩,数学思维还有综合素质都得到了显著的提高。就我刚刚上的“圆的标准方程”这一节课,谈一下我自己的想法:“圆的标准方程”这节课的内容相对比较简单,主要就是考察圆的概念,圆的标准方程求法,但由于圆的基本性质联系现实生活比较紧密,所以我将本节的数学课与学生的专业和日常生活中的实物结合,将教学任务分解,本着第三层次的学生能解决不找第二层的学生,第二层次的学生能解决不给第一层次的学生这一原则,充分发挥了第三层次学生的作用,上课时所有学生的参与度空前高涨。成功之处:
通过落实分层学案,使学生找到适合自己的学案,这不仅有利于课上有意注意的保持,而且方便学生在课后及时复习,写出反思;
力求将全班学习、小组讨论和个人独立研究三者有机结合,给学生以思考、讲解和展示的机会,采用小组学习法,组内强弱搭配,组的每位学生的能力得到均衡,培养学生的协作意识和参与意识,使学生参与课堂的主动性都有所增强;
2.生活引入,又从生活结束。让学生体会到数学源于生活,贴近生活。整堂课效果还是满意的,但是还是存在一些问题。比如:
1.组与组之间搭配不太合理;
2.没有充分挖掘第一层次的学生的潜力,而且第三层次的学生到达第三类题目时,一看数学应用题直接放弃了。存在问题,解决问题。本着这一原则,我会继续努力。
圆的标准方程教学反思2
本节课通过提问引入,在初中学过圆的概念,那么具有什么性质的点的轨迹成为圆呢?然后建立圆的标准方程。本节课采用ppt多媒体演示,增加了信息量,动态演示图形,引起学生更强的注意,提高课堂的教学效率。为了激发学生的主体意识,教学生学会学习和学会创造,同时培养学生的应用意识,本节内容可采用“引导探究”教学模式进行教学设计。教师在教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机的结合起来。教师的每项教学措施,都是给学生创造一种思维情景,一种动脑、动手、动口并主动参与的学习机会,激发学生的求知欲,促使学生解决问题。这节课学生很投入,他们通过独立思考,相互讨论,交流合作发现知识,教学不仅仅是知识的传授,更重要的是让学生参与获得知识的活动,教师应培养学生主动获取知识的能力。
本节课的失误在于:
①课前我以为同学在初中学过圆,并且对圆的定义有深入的了解,但实际情况比我想象的更糟糕,同学的基础有点差,在问题的设计处没有达到预期的效果。
②在解决圆的问题中多次用到配方法,待定系数法等思想方法,应该多加总结。
③有关圆的内容非常丰富,有很多有价值的问题,应该选取一些较难的题目供学习好的学生研究。
圆的标准方程教学反思3
圆的标准方程,这节内容我安排了两节课的时间,这节课主要是圆的标准方程的推导和一些简单的运用。在*面解析几何中,我认为这节内容很重要,因为它的研究方法为以后学习圆锥曲线提供了一个基础模式,如果学生掌握得好,后面的学习会轻松许多。
由于我所面对的学生初中数学基础不是很好,所以提前复习了旧知识,之后我引入了生活中的一个常见问题引发学生的疑问,产生认知冲突形成学习的氛围,进而提高学生学习本节内容的兴趣。
圆的标准方程是求曲线方程的一个具体表现,但学生对圆的标准方程还是很陌生,难以将圆与圆的标准方程紧密联系起来。基于此,我想通过学生的切身体验;来发现圆的决定要素,让学生明确一个圆对应一个方程,在此基础上借助求曲线方程的基本步骤,由学生自主探究推导出以(2,3)为圆心,2为半径的圆的标准方程,再由特殊到一般,利用化归的思想归纳出以(a,b)为圆心,r为半径的圆心的标准方程。并引导学生找出方程的特征,以帮助学生理解和记忆,及时掌握。
例题教学的设计,还是紧密围绕圆的标准方程这一目标展开,主要加深对圆的标准方程的理解及一些简单的应用。例题安排不多,但变式较多,变式的设计由特殊到一般,由简到繁,由浅入深,层层入深,让学生的.思维得以提高,比较符合学生的认知规律,这样学生接受起来比较容易。
课堂练习,是对本节课目标落实情况的检测,让学生明确本节课应该到达什么样的目标,题不多,很基础,主要是激发学生的兴趣和增强学习的自信。
整个教学设计,我的希望是以学生自主学习为主,所以很多问题都由学生独立思考或讨论完成,教师仅仅是一个引路人,让学生的主体地位得到充分体现,注重学生思维的形成过程,并将数学思想方法渗透到教学中。
总的来说,这节课几乎是按自己的教学设计在进行,而且顺利地完成了。应该说在学生动手,双基落实方面还不错,学生的活动也比较充分,教师仅是及时的引导和
点评,让学生的主体性得到了较为充分的体现。另外,在教学中不断的渗透数学思想和方法,让学生思维得到提升。
当然,这节课还有很多不足的地方。比如:在变式练习时,未写出切线的方程,缺乏解题和板书的完整性;另外,后面的课堂练习也没有得到及时的反馈,这是较遗憾的。
从这堂课的教学设计和教学的过程中,我得到了锻炼和提高,这对我在今后的教学有很大的帮助。
《椭圆及其标准方程》说课稿3篇(扩展7)
——高中数学椭圆说课稿 (菁选2篇)
高中数学椭圆说课稿1
一、教学背景分析
(一)教材地位分析:《椭圆及其标准方程》是继学习圆以后运用“曲线与方程”思想解决二次曲线问题的又一实例,从知识上说,本节课是对坐标法研究几何问题的又一次实际运用,同时也是进一步研究椭圆几何性质的基础;从方法上说,它为进一步研究双曲线、抛物线提供了基本模式和理论基础,因此本节课起到了承上启下的重要作用.
(二)重点、难点分析:本节课的重点是椭圆的定义及其标准方程,标准方程的推导是本节课的难点,要突破这一难点,关键是引导学生正确选择去根式的策略.
(三)学情分析:在学习本节课前,学生已经学习了直线与圆的方程,对曲线和方程的思想方法有了一些了解和运用的经验,对坐标法研究几何问题也有了初步的认识,因此,学生已经具备探究有关点的轨迹问题的知识基础和学习能力,但由于学生学习解析几何时间还不长、学习程度也较浅,并且还受到高二这一年龄段学习心理和认知结构的影响,在学习过程中难免会有些困难.如:由于学生对运用坐标法解决几何问题掌握还不够,因此从研究圆到椭圆,学生思维上会存在障碍.
二、教学目标设计
(一)知识目标:掌握椭圆的定义及其标准方程;会根据条件写出椭圆的标准方程;通过对椭圆标准方程的探求,再次熟悉求曲线方程的一般方法.
(二)能力目标:学生通过动手画椭圆、分组讨论探究椭圆定义、推导椭圆标准方程等过程,提高动手能力、合作学习能力和运用知识解决实际问题的能力.
(三)情感目标:在形成知识、提高能力的过程中,激发学生学习数学的兴趣,提高学生的审美情趣,培养学生勇于探索、敢于创新的精神.
三、教法学法设计
(一)教学方法设计:为了更好地培养学生自主学习能力,提高学生的综合素质,我主要采用探究式教学方法.一方面我通过设置情境、问题诱导充分发挥主导作用;另一方面学生通过对我提供的素材进行直观观察→动手操作→讨论探究→归纳抽象→总结规律的过程充分体现主体地位.
使用多媒体辅助教学与自制教具相结合的设计方案,实现多媒体快捷、形象、大容量的优势与自制教具直观、实用的优势的结合,既突出了知识的产生过程,又增加了课堂的趣味性.
1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;
2.能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;
3.通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;
4.通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力;
5.通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识.
四、教学建议
教材分析
1.知识结构
2.重点难点分析
重点是椭圆的定义及椭圆标准方程的两种形式.难点是椭圆标准方程的建立和推导.关键是掌握建立坐标系与根式化简的方法.
椭圆及其标准方程这一节教材整体来看是两大块内容:一是椭圆的定义;二是椭圆的标准方程.椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把对椭圆的研究放在了重点,在双曲线和抛物线的教学中巩固和应用.先讲椭圆也与第七章的圆的方程衔接自然.学好椭圆对于学生学好圆锥曲线是非常重要的.
(1)对于椭圆的定义的理解,要抓住椭圆上的点所要满足的条件,即椭圆上点的几何性质,可以对比圆的定义来理解.
另外要注意到定义中对“常数”的限定即常数要大于.这样规定是为了避免出现两种特殊情况,即:“当常数等于时轨迹是一条线段;当常数小于时无轨迹”.这样有利于集中精力进一步研究椭圆的标准方程和几何性质.但讲解椭圆的定义时注意不要忽略这两种特殊情况,以保证对椭圆定义的准确性.
(2)根据椭圆的定义求标准方程,应注意下面几点:
①曲线的方程依赖于坐标系,建立适当的坐标系,是求曲线方程首先应该注意的地方.应让学生观察椭圆的图形或根据椭圆的定义进行推理,发现椭圆有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得简单,而且也可以使最终得出的方程形式整齐和简洁.
②设椭圆的焦距为,椭圆上任一点到两个焦点的距离为,令,这些措施,都是为了简化推导过程和最后得到的方程形式整齐、简洁,要让学生认真领会.
③在方程的推导过程中遇到了无理方程的化简,这既是我们今后在求轨迹方程时经常遇到的问题,又是学生的难点.要注意说明这类方程的化简方法:①方程中只有一个根式时,需将它单独留在方程的一侧,把其他项移至另一侧;②方程中有两个根式时,需将它们分别放在方程的两侧,并使其中一侧只有一项.
④教科书上对椭圆标准方程的推导,实际上只给出了“椭圆上点的坐标都适合方程“而没有证明,”方程的解为坐标的点都在椭圆上”.这实际上是方程的同解变形问题,难度较大,对同学们不作要求.
(3)两种标准方程的椭圆异同点
中心在原点、焦点分别在轴上,轴上的椭圆标准方程分别为:,.它们的相同点是:形状相同、大小相同,都有,.不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同.
椭圆的焦点在轴上标准方程中项的分母较大;
椭圆的焦点在轴上标准方程中项的分母较大.
另外,形如中,只要,,同号,就是椭圆方程,它可以化为.
(4)教科书上通过例3介绍了另一种求轨迹方程的常用方法——中间变量法.例3有三个作用:第一是教给学生利用中间变量求点的轨迹的方法;第二是向学生说明,如果求得的点的轨迹的方程形式与椭圆的标准方程相同,那么这个轨迹是椭圆;第三是使学生知道,一个圆按某一个方向作伸缩变换可以得到椭圆.
高中数学椭圆说课稿2
一、说教材:
1. 地位及作用:
“椭圆及其标准方程”是高中《解析几何》第二章第七节内容,是本书的重点内容之一,也是历年高考、会考的必考内容,是在学完求曲线方程的基础上,进一步研究椭圆的特性,以完成对圆锥曲线的全面研究,为今后的学习打好基础,因此本节内容具有承前启后的作用。
2. 教学目标:
根据《教学大纲》,《考试说明》的要求,并根据教材的具体内容和学生的实际情况,确定本节课的教学目标:
(1)知识目标:掌握椭圆的定义和标准方程,以及它们的应用。
(2)能力目标:
(a)培养学生灵活应用知识的能力。
(b) 培养学生全面分析问题和解决问题的能力。
(c)培养学生快速准确的运算能力。
(3)德育目标:培养学生数形结合思想,类比、分类讨论的思想以及确立从感性到理性认识的辩证唯物主义观点。
3. 重点、难点和关键点:
因为椭圆的定义和标准方程是解决与椭圆有关问题的重要依据,也是研究双曲线和抛物线的基础,因此,它是本节教材的重点;由于学生推理归纳能力较低,在推导椭圆的标准方程时涉及到根式的两次*方,并且运算也较繁,因此它是本节课的难点;坐标系建立的好坏直接影响标准方程的推导和化简,因此建立一个适当的直角坐标系是本节的关键。
二、 说教材处理
为了完成本节课的教学目标,突出重点、分散难点、根据教材的内容和学生的实际情况,对教材做以下的处理:
1.学生状况分析及对策:
2.教材内容的组织和安排:
本节教材的处理上按照人们认识事物的规律,遵循由浅入深,循序渐进,层层深入的原则组织和安排如下:
(1)复习提问(2)引入新课(3)新课讲解(4)反馈练习(5)归纳总结(6)布置作业
三、 说教法和学法
1.为了充分调动学生学习的`积极性,是学生变被动学习为主动而愉快的学习,引导学生自己动手,让学生的思维活动在教师的引导下层层展开。请学生参与课堂。加强方程推导的指导,是传授知识与培养能力有机的溶为一体,为此,本节课采用“引导教学法”。
2.利用电脑所画图形的动态演示总结规律。同时利用电脑的动态演示激发学生的学习兴趣。
四、 教学过程
教学环节
3.设a(-2,0),b(2,0),三角形abp周长为10,动点p轨迹方程。
例1属基础,主要反馈学生掌握基本知识的程度。
例2可强化基本技能训练和基本知识的灵活运用。
小结
为使学生对本节内容有一个完整深刻的认识,教师引导学生从以下几个方面进行小结。
1.椭圆的定义和标准方程及其应用。
2.椭圆标准方程中a,b,c诸关系。
3.求椭圆方程常用方法和基本思路。
通过小结形成知识体系,加深对本节知识的理解培养学生的归纳总结能力,增强学生学好圆锥曲线的信心。
布置作业
(1) 77页——78页 1,2,3,79页 11
(2) 预习下节内容
巩固本节所学概念,强化基本技能训练,培养学生良好的学习习惯和品质,发现和弥补教学中的遗漏和不足。
上一篇:《武林外传》经典名台词3篇