2023年度《三角形三边关系》说课稿3篇(2023年)
《三角形的三边关系》说课稿1 一、问好 尊敬的各位评委老师,大家下午好,我是今天的5号考生,我今天说课的题目是《三角形的三边关系》。 二、总括语 我将以教什么怎么教,以及为什么这么教为思路,下面是小编为大家整理的2023年度《三角形三边关系》说课稿3篇(2023年),供大家参考。
《三角形的三边关系》说课稿1
一、问好
尊敬的各位评委老师,大家下午好,我是今天的 5 号考生,我今天说课的题目是《三角形的三边关系》。
二、总括语
我将以教什么怎么教,以及为什么这么教为思路,具体从教材分析,学情分析,教法学法,教学过程以及板书设计五个方面加以说明。
三、教材分析
教材是进行教学的评判依据,是学生获取知识的重要来源,因此,我将分析教材放在首要位置。
本节课选自人教版小学数学四年级下册第五单元。本单元围绕三角形的相关性质展开,本课需要学生在对三角形基本定义和特征了解的基础上,掌握三角形三边关系即两边之和大于第三边的组成特征。本课内容于本章之中起着承上启下的作用。
四、教学目标
新课标要求教学目标是多元的,主要包括学会、会学、乐学三方面内容,基于此我将我
的教学目标也设立为以下三方面:
1.知识与技能目标:理解和掌握三角形的三边关系;这也是本堂课的重难点。
2.过程与方法目标:引导同学们将自主学习和合作探究的方法应用到猜想、验证以及总结的
过程当中去。
3.情感态度与价值观目标:通过对本课的学习,领悟数学的魅力,并愿意将我们学的理论知识应用在实践当中。
1. 直观演示法:利用图片等手段进行直观演示,激发学生的学习兴趣,活跃课堂气氛,促进学生对知识的掌握。
2. 活动探究法:引导学生通过创设情景等活动形式获取知识,以学生为主体,使学生的独立探索性得到了充分的发挥,培养学生的自觉能力、思维能力、活动组织能力。
3. 集体讨论法:针对学生提出的问题,组织学生进行集体和分组语境讨论,促使学生在学习中解决问题,培养学生团结协作的精神。
五、学情分析
在对教材有了基本了解的基础上,我们还应该对学生数学学习情况的基础有一个了解,小学四年级的学生正处于感性思维向理性思维转换的阶段,对于一些简单数学问题已经有了了解和掌握,只是对一些个深入的问题尚不能独立解决,他们好奇心强,好玩好动,听课过程中注意力不够集中,因此需要老师在教学过程当中有一个积极的引导。
六、教学教法
为了逐步实现教学目标,解决重难点问题,根据学生身心发展和数学学习的特点以及以学定教的原则,我将会采取讲授法,提问法,分析法进行授课。
正所谓授人以鱼,不如授人以渔,我将采取诱思深究,自主学习,合作探究,举一反三的方法相结合,提高同学们学习的积极性。
七、教学过程
以上所有的努力都是为了更科学合理的呈现我们的教学过程!为了让同学们真正做到学有所获,我将我的教学过程设计如下:
好的导入未成曲调,先有情,像磁石一样把学生牢牢的吸引住。因此我将采取情景创设的方式进行导入:同学们,我们一起看大屏幕,大屏幕上的地点大家熟不熟悉?哎,这里分别是咱们学校、建行和火车站,大家看,如果将这三个地点的路线连在一起的话会形成一个什么形状,对三角形。现在呀,老师想要从学校到建行取一些钱,走哪条路线会更近?哦,你是说直走?那现在老师在建行取完钱去火车站怎么走?你也说直走。那老师想问问大家,为什么大家会觉得在三角形的路线当中走其中一边会走另外两边花费更短的时间呢?大家大部分都是使用的.生活知识得到的这个结论,那么有没有什么办法能够验证我们的这个想法呢?带着这个问题一起进入我们今天的学习《三角形的三边关系》。
进行完导入之后,在我们启发诱导,探索新知的环节,首先我会拿出提前准备好的三根小棒,让同学们猜想这三个小棒能否形成三角形。在得到同学们肯定答案以后,我会将其中的一根小棒折断,取其中的一部分,继续引导同学们思考:在这样的条件下三根小棒是否能够拼凑成三角形。以此来引发同学们的兴趣,让他们猜想一下三边处于怎样的关系才能够形成三角形。
紧接着我会趁热打铁,让同学们亲自动手操作,用各种各样不同长短的小棒来拼凑三角形,然后小组合作记录数据,推出三角形形成的原因必须是两边之和大于第三边的原理。
紧接着在巩固部分,我会依据三角形的两边之和大于第三边这个定理给同学们出题,验证大家是否对于本节课关于三角形三边的关系问题掌握。在进行完巩固练习环节之后,我会让同学们回顾本堂课的内容,并留出课后作业,让大家测量生活当中三角形的长度。
最后我将进行我的板书设计。好的板书设计,能够培养学生思维的灵活性和发散性,也能够体现我的整体授课逻辑和层次,我将在黑板中央的正上方写上主题,下方写上大家实验得到的表格数据,以及关于三角形三边关系的论断,在右侧黑板的最下方写出我今天所留的作业。
以上就是我的说课过程,感谢各位考官。
《三角形的三边关系》说课稿3篇扩展阅读
《三角形的三边关系》说课稿3篇(扩展1)
——《三角形三边关系》说课稿3篇
《三角形三边关系》说课稿1
一、问好
尊敬的各位评委老师,大家下午好,我是今天的 5 号考生,我今天说课的题目是《三角形的三边关系》。
二、总括语
我将以教什么怎么教,以及为什么这么教为思路,具体从教材分析,学情分析,教法学法,教学过程以及板书设计五个方面加以说明。
三、教材分析
教材是进行教学的评判依据,是学生获取知识的重要来源,因此,我将分析教材放在首要位置。
本节课选自人教版小学数学四年级下册第五单元。本单元围绕三角形的相关性质展开,本课需要学生在对三角形基本定义和特征了解的基础上,掌握三角形三边关系即两边之和大于第三边的组成特征。本课内容于本章之中起着承上启下的作用。
四、教学目标
新课标要求教学目标是多元的,主要包括学会、会学、乐学三方面内容,基于此我将我
的教学目标也设立为以下三方面:
1.知识与技能目标:理解和掌握三角形的三边关系;这也是本堂课的重难点。
2.过程与方法目标:引导同学们将自主学习和合作探究的方法应用到猜想、验证以及总结的
过程当中去。
3.情感态度与价值观目标:通过对本课的学习,领悟数学的魅力,并愿意将我们学的理论知识应用在实践当中。
1. 直观演示法:利用图片等手段进行直观演示,激发学生的学习兴趣,活跃课堂气氛,促进学生对知识的掌握。
2. 活动探究法:引导学生通过创设情景等活动形式获取知识,以学生为主体,使学生的独立探索性得到了充分的发挥,培养学生的自觉能力、思维能力、活动组织能力。
3. 集体讨论法:针对学生提出的问题,组织学生进行集体和分组语境讨论,促使学生在学习中解决问题,培养学生团结协作的精神。
五、学情分析
在对教材有了基本了解的基础上,我们还应该对学生数学学习情况的基础有一个了解,小学四年级的学生正处于感性思维向理性思维转换的阶段,对于一些简单数学问题已经有了了解和掌握,只是对一些个深入的问题尚不能独立解决,他们好奇心强,好玩好动,听课过程中注意力不够集中,因此需要老师在教学过程当中有一个积极的引导。
六、教学教法
为了逐步实现教学目标,解决重难点问题,根据学生身心发展和数学学习的特点以及以学定教的原则,我将会采取讲授法,提问法,分析法进行授课。
正所谓授人以鱼,不如授人以渔,我将采取诱思深究,自主学习,合作探究,举一反三的方法相结合,提高同学们学习的积极性。
七、教学过程
以上所有的努力都是为了更科学合理的呈现我们的教学过程!为了让同学们真正做到学有所获,我将我的教学过程设计如下:
好的导入未成曲调,先有情,像磁石一样把学生牢牢的吸引住。因此我将采取情景创设的方式进行导入:同学们,我们一起看大屏幕,大屏幕上的地点大家熟不熟悉?哎,这里分别是咱们学校、建行和火车站,大家看,如果将这三个地点的路线连在一起的话会形成一个什么形状,对三角形。现在呀,老师想要从学校到建行取一些钱,走哪条路线会更近?哦,你是说直走?那现在老师在建行取完钱去火车站怎么走?你也说直走。那老师想问问大家,为什么大家会觉得在三角形的路线当中走其中一边会走另外两边花费更短的时间呢?大家大部分都是使用的生活知识得到的这个结论,那么有没有什么办法能够验证我们的这个想法呢?带着这个问题一起进入我们今天的学习《三角形的三边关系》。
进行完导入之后,在我们启发诱导,探索新知的环节,首先我会拿出提前准备好的三根小棒,让同学们猜想这三个小棒能否形成三角形。在得到同学们肯定答案以后,我会将其中的一根小棒折断,取其中的一部分,继续引导同学们思考:在这样的条件下三根小棒是否能够拼凑成三角形。以此来引发同学们的兴趣,让他们猜想一下三边处于怎样的关系才能够形成三角形。
紧接着我会趁热打铁,让同学们亲自动手操作,用各种各样不同长短的小棒来拼凑三角形,然后小组合作记录数据,推出三角形形成的原因必须是两边之和大于第三边的原理。
紧接着在巩固部分,我会依据三角形的两边之和大于第三边这个定理给同学们出题,验证大家是否对于本节课关于三角形三边的关系问题掌握。在进行完巩固练习环节之后,我会让同学们回顾本堂课的内容,并留出课后作业,让大家测量生活当中三角形的长度。
最后我将进行我的板书设计。好的板书设计,能够培养学生思维的灵活性和发散性,也能够体现我的整体授课逻辑和层次,我将在黑板中央的正上方写上主题,下方写上大家实验得到的表格数据,以及关于三角形三边关系的论断,在右侧黑板的最下方写出我今天所留的作业。
以上就是我的说课过程,感谢各位考官。
《三角形三边关系》说课稿2
一、说教材
通过这一内容的学习,使学生在已经建立三角形概念的基础上,进一步深化理解三角形的组成特征,加深学生对三角形的认识,同时,也为以后学习三角形与四边形及其他多边形的联系与区别打下基础。
根据新课标的精神,要改变学生学习的方式,让学生经历“数学化”、“做数学”等过程,并注重与生活实际紧密联系,学有价值的数学。根据这一教学内容在教材中所处的地位与作用,以及新课标的要求,我认为设计这节课的理念是:活动参与、自主建构,联系生活、应用数学。
(一)教学目标
1、通过创设问题情景、直观演示、观察比较,初步感知三角形边的关系。
2、学生通过动手实践、猜想验证、自主探索、合作交流发现三角形任意两边之和大于第三边。
3、能判断给定长度的三条线段是否围成三角形,能运用三角形任意两边之和大于第三边这一知识解决生活中的简单的实际问题,感受到生活中处处有数学。
4、通过学习发展学生的空间观念,使学生体验成功的喜悦,激发学生学习数学的兴趣。
(二)教学重点
1、引导发现不能摆成三角形的原因,并探讨能摆成三角形的边的性质。
2、理解、掌握“三角形任意两边之和大于第三边”的性质。
(三)教学难点
引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。
二、学情分析
在正式学习三角形三边关系之前,学生在生活中已经了解了一些关于三角形三边关系的感性经验,这些经验构成了学生学习的认知基础。过程中,学生在抽象概括三角形三边之间的关系时,可能在数学语言的描述上会有一定的"困难,表达上也可能不够严密,但只要学生表达的意思对,教师就应该积极的给以肯定,同时教师要给学生更多探讨的空间和交流的机会,毕竟数学模型的建立和思维的发展需要经历一个渐近思辩的过程。
三、说教法和学法
在“活动参与、自主建构,联系生活、运用数学”的设计理念指导下,我的教学思路是:问题引领、动手操作、探究规律,并在解决生活实际问题中促进每一位学生获得不同的发展。
(一)创设问题情景,激发学生学习兴趣
我先给学生创设情景,引起悬念,让学生在动、观察、感知的基础上,激发学生学习数学的兴趣。
(二)动手操作、合作探究、自主建构数学规律
新课标强调要从学生已有的生活经验出发,在设计课程方案时,充分发挥学生的主体精神,留有足够的时间和空间激发他们主动探索。让学生动起来,活起来,让他们在猜想、质疑、验证、探究、测量、实践操作、问题解决等过程中,经历想一想,猜一猜,画一画,比一比等活动,努力营造协作互动、自主探究、议论纷纷的课堂教学氛围,将课堂真正还给学生,让学生在自主活动中得以发展。
(三)联系生活,体会数学应用价值
现实生活中存在着大量的数学问题,学生学习数学已不仅仅局限于教材之内,而是扩大到了生活的每个角落。因此,我将有意识地引导学生从数学的角度,应用所学的知识“三角形任意两边的和大于第三边”去解决生活中实际问题,让学生学有价值的数学。通过解决生活中的问题,让学生感受到数学源于生活,更要服务于生活。
四、说教学程序设计
(一)创设情境,使学生对三角形三边关系的探索成为
一种需要。
(二)自主探究,经历、体验三角形三边关系的形成、发展过程。
(三)巧设练习,促进思维的发展,体验数学的意义和价值。
《三角形的三边关系》说课稿3篇(扩展2)
——三角形三边关系优秀教学设计 (菁选5篇)
三角形三边关系优秀教学设计1
教学内容
人教版义务教育课程实验教科书数学四年级下册P82页。
教学目标
1.让学生通过动手实践、自主探索、合作交流发现三角形任意两边之和大于第三边。
2.能判断给定长度的三条线段是否围成三角形,能运用三角形任意两边之和大于第三边这一知识解决生活中的简单的实际问题,感受到生活中处处有数学。
3.通过学习发展学生的空间观念,使学生体验成功的喜悦,激发学生学习数学的兴趣。
教具、学具准备
多媒体课件,不同长度不同颜色的小棒若干根,实验表格。
教学过程
一、创设情境,导入新课
师:(出示课件)同学们看,图上这些地方你们都熟悉吗?
(我们的学校、鼓楼商场还有学校后门的建设银行。)
师:如果把我们学校大门到建行看成一条直路的话,把这三个地方连接起来,就成什么图形?
师:老师从学校大门口到建行去取钱,有几条路可走?猜一猜我会走哪条路呢?为什么?
师:老师在银行取了钱后,现在要去鼓楼商场购物,又有几条路可走?我会走哪条路?
师:老师现在要回学校,我又有几条路可走?我又会选择哪条路呢?
师:同学们你们为什么认为在三角形的线路中走其中一条边的线路比走另外两条边组成的线路近呢?把你的想法在小组里交流一下。
师:大多数的同学都是从生活经验中发现走两条边的线路比走另一条边的线路远。那么,有没有别的办法证明我们的这种判断是正确的呢?
(学生困惑,沉默不语.)
师:今天我们就用数学的方法来研究一下,看看在三角形中,三边的关系是怎样的?
(板书课题:三角形的三边关系)
二、设疑激趣,动手探究
师:(设疑)用小棒代替线段。请看,老师这儿有红、蓝、黄色的小棒若干根,任意拿三种颜色的小棒能围成一个三色的三角形吗?(学生会出现能围成和不能围成两种情况。)
师:有两种意见,到底谁的猜测是正确的呢?让我们动手操作后再谈自己的发现。
师:我请一位同学上来任意拿出不同颜色的三根小棒,看看能不能围成三角形?
(学生上台演示,其他同学看。)
师:这位同学围成三角形了吗?(根据学生的情况将数据填在表格中)你们想不想试试?
师:请拿出老师为你们准备的小棒,要求用三种颜色的小棒围三角形。看看哪些长度的小棒能围成三角形,哪些长度的小棒不能围成三角形。
同桌分工合作,一个同学围三角形,然后读出小棒上标出的长度;另一个同学作记录。
(单位:厘米)
能围成三角形的三根小棒(红、蓝、黄)的长度分别是:
不能围成三角形的三根小棒(红、蓝、黄)的长度分别是:
你的重大发现
三、汇报交流,发现规律
让每组同学汇报围成和围不成三角形的数据。
师:同样用三根小棒,为什么有的能围成三角形,为什么有的不能围成三角形呢?你从中发现了什么?
根据学生的情况,进行课件演示能围成和不能围成两种情况。(不能围成又有两种情况:两条边之和等于第三边的情况;两边之和小于第三边的情况)
师:到底什么样长度的三根小棒可以围成三角形呢?
结论一:两边之和大于第三边。
师:同学们都同意这个结论吗?有不同意见吗?
根据学生的情况,随机用不能围成的一组数据,如“3、7、10”举一例:3+10>7,那为什么不能围成一个三角形呢?
师:看来同学们发现的这个结论不够全面.还能怎么修改一下呢?
进一步得出
结论二:三角形任意两边之和大于第三边。
师:这个结论全面吗?是否适合任何一个三角形呢?请同学们任意画一个或摆一个三角形,量出三边的长度,验证一下。
师:同学们真了不起,通过大家的共同努力,发现了一个有关三角形的三边关系的重要结论,那就是:三角形中任意两边之和大于第三边。
四、学以致用,解决问题
1.解释老师所行路线的原因。
2.判断。
(2)(3)(4)
3.(课件演示)小猴盖新房,他准备了2根3米长的木料做房顶,还要一根木料做横梁,请你们帮他想一想,他该选几米长的木料最合适呢?
五、全课小结。
三角形三边关系优秀教学设计2
教学目标:
1.通过直观操作活动和计算观察,让学生探索并发现三角形任意两边长度的和大于第三边。
2.引导学生参与探究和发现活动,经历操作、发现、验证的探究过程,培养学生自主探究、合作交流的能力。
3.培养学生积极的学习态度和乐于探究的数学情感。
教学重点:掌握“三角形任意两边长度的和大于第三边”的关系。
教学难点:运用三角形三边的关系解决实际问题。
教学准备:课件
教学过程:
一、谈话引入
1.举例:生活中哪些物体的面是三角形的?
2.复习三角形的各部分名称。
提问:我们已经初步认识了三角形,关于三角形你已经知道了什么?
引导学生回忆三角形的特点:有3条边、3个角、3个顶点、3条高……
3.导入新课。
三角形还有什么特点呢?今天这节课我们来探究三角形三条边的长度关系。(板书课题)
二、交流共享
1.课件出示教材第77页例题3:任意选三根小棒,能围成一个三角形吗?
2.操作交流。
(1)学生从自己准备的四根小棒中选出三根小棒来围一围,看看能不能围成三角形。
教师巡视,了解学生的操作情况。
(2)小组交流。
布置学生将各自的操作情况在四人小组内进行交流。
(3)全班交流,指名回答:你选择的是哪三根小棒,是否能围成一个三角形?
学生回答预设:
①选择8cm、5cm、4cm三根小棒,能围成三角形。
②选择5cm、4cm、2cm三根小棒,能围成三角形。
③选择8cm、4cm、2cm三根小棒,不能围成三角形。
④选择8cm、5cm、2cm三根小棒,不能围成三角形。
追问:第③种情况和第④种情况为什么不能围成三角形?
引导学生认识到:第③种情况中,4cm、2cm这两根小棒太短了,三根小棒不能首尾相接;第④种情况中,5cm、2cm这两根小棒太短了,三根小棒不能首尾相接。
教师小结:因为4cm+2cm8cm,5cm+2cm8cm,所以不能围成三角形。
3.探索规律。
师:我们已经知道了当两根小棒长度相加比第三根小棒短时,不能围成三角形。那能围成三角形的三根小棒的长度又有什么特点呢?
(1)布置探索任务。
从围成三角形的三根小棒中任意选出两根,将它们的长度和与第三根比较,结果怎样?
(2)学生独立探索。
(3)交流汇报。
第①种情况:4+58、4+85、5+84;
第②种情况:4+25、4+52、5+24。
小结:任意两根小棒长度的和一定大于第三根小棒。
4.验证规律。
提问:三角形任意两边长度的和一定大于第三边吗?
(1)画一画:用三角尺画一个三角形。
(2)量一量:量出三角形的各边长度。(单位:毫米)
(3)算一算:算出任意两边之和与第三边长度的关系。
(4)总结规律。
提问:通过验证,你发现三角形三边的长度有哪些关系?
师生共同总结得出:三角形任意两边长度的和大于第三边。
追问:对于“任意两边”这四个字,你是怎么理解的?
5.议一议:如果三根小棒的长度分别是8厘米、5厘米和3厘米,能围成三角形吗?为什么?
引导学生得出:5厘米长的小棒和3厘米长的小棒长度相加等于8厘米,并没有大于8厘米,所以这三根小棒不能围成三角形。
三、反馈完善
1.完成教材第78页“练一练”第1题。
先让学生独立进行判断,再组织交流汇报。交流时让学生说说判断的依据,教师可以介绍用两短边的和与第三边比较。
2.完成教材第78页“练一练”第2题。
这道题是已知三角形的两条边的长度,求第三条边的长度范围。题目提供了四个答案让学生进行选择,降低了思维难度,学生在练习时可以进行尝试。在学生完成后,教师也可以引导学生探究三角形的第三条边的长度范围,即“两边之差第三边两边之和”。
四、反思总结
通过本课的学习,你有什么收获?还有哪些疑问?
三角形三边关系优秀教学设计3
教学目标:
知识与技能:发现并理解三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题。培养归纳、概括能力和推理能力。
过程与方法:.积极参与探究活动,经历发现问题、探究问题及得出结论的过程,提高学生观察、思考、抽象概括和动手操作的能力。.能根据三角形三边的关系解释生活中的现象
情感态度与价值观:提高学生自主探索和合作交流的能力。激发对数学的探究兴趣,引导学生树立自己探索真理的勇气和信心,享受成功的喜悦。
教学重点:三角形三边关系的实验与探究。
教学难点:利用三角形三条边之间的关系解决实际问题。
教具准备:三角形、支直尺、不同长度的小纸条若干、分组操作记录表、双面胶、自制课件ppt
教学过程:
一、导入。
1、谈话创设情境:
这节课老师有一个愿望,那就是能够看到同学们:敢想敢说敢问敢辩敢失败,特别是敢失败,因为水稻之父袁隆*曾经说过:失败里包含着成功的因素。你们能帮助老师实现愿望吗?(课件出示)
2、复习旧知:
(1)(欣赏图片)你看到了什么?
(2)那你能说一说,你对三角形都有哪些了解?
(3)三个顶点,三个角,三条边,三角形具有稳定性;
(4)那么到底什么是三角形?(由三条线段围成的图形)分析这句话突出“围成”。
3、质疑:是不是任意的三条线段都能拼成三角形呢?导入新课
二、动手操作、探究新知。
(一)、分组操作:请同学们用你们手上的小纸条来围成一个三角形,你们能完成吗?
操作要求:
1、每6人一组。组长一人、记录员一人、测量员一人、其余的是操作员
2、测量员量出你所选择的纸条的长度;
3、记录员做记录;
4、操作员动手拼三角形,把你拼出来的图形贴在下面;
5、组长汇报结果。
注意:相邻的两条线段要端点相连。
(二)汇报结果:按顺序组长分组汇报结果(本组选择的纸条的长度、能否拼成三角形)。
展示操作结果:
试验次数三边长度(cm)结果三角形三条边的长度关系
(1)3、5、9否较短的两条边长度之和小于第三边3+5<9
(2)3、6、9否较短的两条边长度之和等于第三边3+6=9
(3)3、5、7是较短的两条边长度之和大于第三边3+5>7
(4)5、6、7是较短的两条边长度之和小于第三边5+6>7
(5)5,8,13否较短的两条边长度之和等于第三边5+8=13
(6)7,11,12是较短的两条边长度之和大于第三边7+11>12
(7)18,7,5否较短的两条边长度之和小于第三边5+7<18
(8)11,4,15否较短的两条边长度之和等于第三边4+11=15
(三)引导学生发现特性:(课件演示)
1、两条边的长度之和小于或等于第三条边的长度不能围成三角形
2、较短的两条边的长度之和大于第三条边的长度能围成三角形
3、学生自由讨论、总结:三角形三条边的关系(三角形任意两条边的长度之和大于第三条边的长度)(揭题、板书)
4、读一读,说一说关键字词是什么?你怎样理解(任意和大于)?
三、精彩练习、拓展提升。(课件出示)
在能围成三角形的各组小棒下面画“√”。(单位:厘米)
(5)1cm2cm3cm()(6)4cm2cm3cm()
(7)3cm4cm5cm()(8)3cm3cm5cm()
四、学以致用。
(一)、课件出示:课本82页例3情境图。
1、这是小明同学上学的路线,请大家仔细观察一下,他可以怎样走?
2、为了描述方便,我们把这几条路线分别标上颜色,在这几条路线中哪条最近?为什么?
3、归纳汇报:请同学看一看,连接小明家、商店、学校三地,近似一个什么图形?连接小明家、邮局、学校三地,同样也近似一个什么图形?因为这三条路正好形成两个三角形,而中间的这条路相当于三角形的一条边,而在三角形中,其他两边之和一定大于第三边,所以中间的这条路最近。得出结论:两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。(板书)
(二)完善表格。
小棒长度(厘米)能否围成三角形
第一根第二根第三根
35
35
35
35
35
35
35
35
五、课堂总结。
同学们,通过今天的研究你有什么收获吗?
1.发现并理解了:三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题,找出到达一个地方最短的路线。
2.通过动手实践,分析数据,体验探索和发现三角形边的关系的过程,培养了发现问题的意识及提出问题的能力,积累探索问题的方法和经验。
板书设计:
三角形三边关系
三角形任意两边之和大于第三边。
两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。
三角形三边关系优秀教学设计4
一、说教材
《三角形三边的关系》是人教版义务教育课程标准实验教科书《数学》第八册第82页的教学内容,属于"空间与图形"的领域。这部分内容是在学生知道了三角形有三条边、三个角和具有稳定性的基础上探索三角形三边的关系。大家知道,在*面图形里,三角形是由3条线段围成的,但并不意味着任意三条线段都能围成三角形。所以掌握这部分内容,可以进一步丰富学生对三角形的认识和理解;它既是对所学知识的延续,又是后继学习多边形的基础,在知识体系上具有承上启下的作用。
几何初步知识无论是线、面、体还是图形的特征、性质,对于小学生来说都比较抽象,要解决数学的抽象性和小学生思维之间的矛盾,就要充分运用直观性进行教学,让学生动手做数学,而不是用耳朵听数学,让学生经历"数学化"、"做数学"等过程,强调在教师的引导作用下,由"获得知识结论快乐"转变为"探究发现知识快乐",并注重与生活实际紧密联系,让学生获得良好的数学教育。依据新课标的精神、结合学生的知识现状和年龄特点,以及这一教学内容在教材中所处的地位与作用,我制定了以下教学目标:
(一)教学目标
1、认知目标:通过创设情景、实物操作、观察比较,发现三角形任意两边之和大于第三边。
2、能力目标:培养学生自主探究、观察、比较和概括能力以及小组合作的意识,能根据三角形三边关系解释生活中的现象,提高解决问题的能力。
3、情感目标:结合教学内容,渗透数学文化、思想、方法的教育。
(二)说教学重难点
探究发现"三角形任意两条边的和大于第三边"是教学重点,而理解"任意两边"是本节课的教学难点。
接下来说说这节课的教法与学法
二、说教法
新课标指出,教无定法,贵在得法。数学教学活动必须建立在学生的认知发展水*和已有的知识经验基础之上。新课程改革要求教师要由传统意义上知识的传授者和学生的管理者转变为学生发展的促进者和帮助者;课堂教学要体现以学生为中心,让学生真正成为学习的主人。因此,我主要采用了情境导入法、设疑诱导法、操作发现法等来组织学生开展探索性的活动,让他们在这一系列活动中经历"数学化"的过程
三、说学法
有效的数学学习活动不是单纯的依赖模仿与记忆,而是一个有目的、主动建构知识的过程,动手操作法、观察发现法、自主探究法、合作交流法是这一节课的学习方法。整节课让学生体验"做数学"的过程。
以下是我的而教学流程。
四、说教学流程教学流程按照8个环节进推进:
第一环节:矛盾冲突。
兴趣是最好的老师,上课一开始,我给学生变魔术,用长度分别是15厘米,13厘米10厘米的三根小棒首尾相接围成三角形,在学生认为我的魔术太简单而不屑一顾时,我让一个学生也上来变一个(给表演的学生提供长度是15厘米,9厘米,26厘米的小棒)学生围不了三角形。我说,他没能围出一个三角形,你能吗?(不能)问题到底出在哪?学生估计会把注意力集中在第三根小棒上,认为第三根小棒太长了,如果是这样,我就把第三根小棒换成5厘米的,还是围不了,此时,教师引导学生提出疑问:怎么就围不起来的呢?看来,看来,三根小棒是否能围成三角形跟它们的长度有关,这节课,老师和你们一起来研究三角形三边的关系。(板书课题)
在教师能变魔术,而学生却变不成的矛盾冲突中,可能已经有大部分学生开始这节课的数学思考了。此处"魔术"的价值不仅仅在于激发学生学习的兴趣,还在于成功地将学生引入到数学思考之中。
第二环节:初建模型。
新课标强调要从学生已有的生活经验出发,让学生动起来,活起来,让他们在猜想、质疑、验证、探究、问题解决等过程中,经历摆一摆、围一围、比一比、想一想、议一议等活动,努力营造协作互动、大胆表达课堂教学氛围,将课堂真正还给学生,让学生在自主活动中得以发展。
给学生提供研究的材料,(5根小棒,不同颜色长度不同,红色(2根)3厘米,绿色5厘米,蓝色7厘米,黄色8厘米。)并提出操作要求(ppt出示)
(1)从这5根小棒中任意选取3根围一个三角形;
(2)同桌2人合作,共同摆小棒。
(3)摆完后共同观察,并把结果记录在表格中。
(4)音乐响起开始,音乐停止时活动结束。
看哪一组完成最多最好。
这一环节是要发挥每个人的。作用,全员参与,人人有事做,避免小组合作流于形式。
反馈(1)335(2)337
(3)338(4)357
(5)358(6)378
(7)578(ppt出示表格)
观察:三根小棒在什么情况下能围城三角形呢?
最后引导归纳:三角形两条边的和大于第三条边(师板书)
随着教学活动的逐步展开,教师围绕"核心知识"精心设疑,引导学生操作观察比较,使学生的思考沿着教学目标不断深入。
第三个环节,完善模型。
回到变魔术的环节,验证学生没有围成的三角形三边的关系,9+15<26再一次引起冲突,但是9+15>5怎么也不能围成三角形呢?
完善性质:三角形任意两边的和大于第三边
验证老师变出的三角形三边的关系,10+13>1510+15>1315+13>10
第四环节:验证模型。
验证:让学生画出任意三角形,量出三条边的长短再算一算,三边之间的关系。
引导学生经历从特殊到一般的数学思考过程,让学生猜想,发现,归纳,验证,寻找反例等数学活动中思考、辨析、释疑、概括、推理,有效渗透从特殊到一般的数学思想,为学生构建了一种结构严谨、逻辑严密的数学思维模式。
第五环节:应用模型。
判断下面的小棒能否围成三角形
(1)2厘米3厘米8厘米()
(2)4厘米7厘米8厘米()
(3)6厘米5厘米8厘米()
(4)5厘米14厘米9厘米()
(5)5厘米9厘米13厘米()
第六环节:优化模型、并体会极限思想。
——优化
有的学生很快做出判断,他们有什么诀窍?
这一过程实际上是打破刚才建构的数学模型,抓住问题本质属性,留下两条短边与长边比较,形成最优化的数学模型结构——两条短边的和大于第三边,
——极限思想
让学生重点观察(4)中的数据
提问:5厘米和9厘米能与多长的小棒围成三角形?
学生思考:第三边不比4厘米短,不能超过14厘米(课件演示)
这一环节是通过直观操作让学生感悟数学的极限思想,让学生感受当两边的长度是5厘米和9厘米时,第三边的长度在4与14厘米之间,感受当第三边变成4厘米或14厘米时,三角形便不存在,将成为一条直线,感受量变到质变的过程,充满理性的思考的数学课堂才是真正扎实有效甚至高效的数学课堂。
第七个环节、走进生活
老师要去小雨家家访,走哪条路近?请你用今天学习的知识来解释
《三角形三边关系》说课
走小路近(让学生说明理由)
(ppt显示草坪)
还走这条路吗?
这一环节的设计不仅使学生深化了对三角形三边关系的理解,还让学生感知作为人还应该有一份社会责任,有一份人文情怀,彰显数学的大教育观。)
第八个环节:课后延伸。
播放《将军饮马》的故事(课件呈现图)
教师讲述:古希腊有一位聪明国人的学者,名叫海伦,有一天,一位将军不远千里来向他请教一个百思不得其解的问题,将军从A地出发到河边饮马,再到B地视察军营(出示图),怎么走路线最短?(出示路线图)你们能用今天学习的知识解决吗?
五、说板书设计
板书设计力求做到重点突出,一目了然。
纵观本节课,体验是学生学习的前提,是学生学习数学的本职与要求,可以说,没有体验就没有真正意义上的学习,慢慢跟着学生的脚步,让学经历的探索过程,在这一过程中,学生参与、经历、思考、反思、发展,作为教者,我们一路倾听花开的声音。
三角形三边关系优秀教学设计5
教学理念:
1、尊重学生的认知规律
三角形“任意两边的和大于第三边”之内容是人教版新课标实验教材四年级下册的一个内容,它是在熟悉了什么是三角形的基础上进行教学的。我力求从实验入手,让学生通过摆小棒,判定如何才能搭成三角形,引导学生经历“发现问题、大胆猜测、操作验证、修改完善、得出结论”的探究过程,最终发现三角形中三边之间的这一特殊关系。这样的设计符合学生的认知规律,既增加学生的学习兴趣,又使学生积累了大量的操作经验和研究经验。
2、以活动为基础,在活动中探究新知
“自主探究、合作交流、亲身实践”是学习数学的一种重要的方式,本节课的设计我改变了“教师重讲知识、学生轻听知识”的模式,而是改为教师指导学生动手操作,自主探索,发现三角形任意两边的和大于第三边作为目的,使学生的主题地位得到了落实,学生真正地成了学习的主人。
教学目标:
1、使学生知道三角形任意两边之和大于第三边。
2、让学生经历探究数学的过程:猜测----实验----结论,感受数学思想在生活、学习中的应用。
3、通过学生动手操作、想象猜测,近一步深化空间概念,提高观察能力和动手操作能力。
教学重、难点:
引导学生想象、猜测、实验,研究什么样的三条线段能围成三角形,发现三角形三条边的关系。
教法方法:
采用问题性教学模式.“以学生为主体、以问题为中心、以活动为基础、以培养分析问题和解决问题能力为目标”。并结合先进手段实施教学,突出重点,突破难点。
学法指导:
通过学生动手、动口、动脑等活动,达到主动探索,发现问题的目的;引导学生分析、讨论,得出解决问题的方法,使他们的思维得到了锻炼;增强数学应用意识,合作意识,养成及时回纳总结的良好学习习惯。
教学准备:
课件、小棒若干
教学过程:
一、创设情景,引渗透新课
师:今天我们打开课本的82页来认识一位小朋友——小明,你们看,他在干什么?
生:他去上学。
师:小明从家到学校有几条路线?(观察后指名说)
生:3条。
师:现在小明遇到麻烦了,我们帮帮他的忙好吗?
生:好。
师:小明今天想快一点去学校走哪一条路最近?(把你的想法和小组内的同学说一说,然后指名说)
生:走中间哪一条路最近。
师:同意吗?
生:同意。
师:为什么呢?谁来说一下自己的理由?
生:我量出来的。
师:谁还有别的方法吗?
生:直走进,拐弯走远。
生:我们以前学过了,两点之间线段最短。
师:同学们都有自己的想法,有的是用测量的方法知道的,有的是结合自己的生活经验,有的是用以前学过的知识。但是生活中的这些路线我们是不可能用尺子去量出他的长度的,这个时候我们该怎么办?
师:下面我们就用数学的眼光、数学知识看看能不能解决这个问题?请同学们仔细观从小明到邮局再到学校近似于一个什么图形呢?
生:三角形。
师:那中间这条路线是三角形的一条边,走旁边的路线实际是三角形的什么呢?孩子们仔细看一下?
生:另外两条边的和。
师:根据大家的判断,走过的三角形两条边的和要比第三条边长。那么是不是所有的三角形的三条边都有这样的关系呢?下面我们来做个实验。
【设计说明:从学生已有的生活经验出发,给学生创设出认识的生活情景,很自然的引入课题,容易产生亲近感。但后来的知识障碍让学生感到用以前的知识解决不了这个问题,必须用一种新的知识来解决,从而激发求知欲望,为下一步的探索新知做好铺垫。】
二、小组合作,探究新知
1、实验一:从准备好的小棒中任意取出三根摆一个三角形,观观你能发现什么?
学生动手操作。交流结果。
生:能。
生:不能。
师:有的同学用三根小棒摆成了一个三角形,而有的同学没有,这到底是什么原因呢?下面我们就对这两种情况做一个深入的研究。
【设计说明:学生自然已经知道什么样的图形是三角形,但对于什么样的三根小棒能摆成一个三角形还处于模糊状态。此时的两种结果正可以激发学生的探究热情。】
2、实验二:进一步研究在什么情况下能组成三角形?
(1)从小棒中任意拿出三根,看观能不能摆成一个三角形?把能摆成三角形和不能摆成三角形的情况分别填写在表格实验内。
小棒的长度(厘米)
《三角形的三边关系》说课稿3篇(扩展3)
——《三角形三边关系》课后教学反思 (菁选3篇)
《三角形三边关系》课后教学反思1
《三角形三边关系》教学内容:“三角形任意两边长度之和大于第三边”是三角形的重要性质。了解这一知识,不仅可以更好地理解和掌握三角形的特征,而且可以利用它解决很多日常生活问题。
特级教师吴正宪提出,要让学生享受既有“营养”又“好吃”的数学学习,单调的练习题如何烹饪成适合学生的美味?教学三角形三边关系,以前的我选择是给3根小棒让学生来探究。而这一次我选择了给他们一张普普通通的纸条,需要学生忽视其宽度,重视其长度,把它“想成”只有长度的线段。这就有了“数学化”的味道。变"学数学"为"做数学"。让学生在自主探索中总结得到三角形的三边关系。让学生能够接受学习内容,提高学习兴趣。使学生在课堂上乐于学数学、做数学、用数学。除此之外我还采用了创设实验情境——动手操作——合作探究——揭示规律——画图验证这种探究方法来完成本节课,目的是让学生体会理论和实践相结合才是严密的论证方法。
课堂及时捕捉学生思维的成果。当学生用纸条摆出结果后,我用手机照相功能把学生的作品保存下来,投放到课件之中,学生的学习兴趣一下高涨起来,把他们不同的成果进行展示,并且进行比较分析,得到了良好的效果。
巧设练习,促进思维的发展,体验数学的意义和价值。在练习中设计了几组线段,让学生判断能否围成三角形,分析这几组数据,得出只要比较较短的两条线段之和是否大于第三条边就可以判断能否围成三角形了。并根据这一发现解决四组线段能否围成三角形的问题。这一过程使学生巩固了基本的知识点,强化教学重点和难点,提高学生对组成三角形的规律的认识,掌握更好的判断方法——较小两条线段之和大于第三条线段,便可构成三角形。
《三角形三边关系》课后教学反思2
《三角形三边关系》这节课重难点非常的清楚,就是让学生明确在三角形中任意两边之和大于第三边,主要是让学生通过操作来探索。但是在这其中又有一个难点就是对于有两条边加起来和第三条一样长的情况该怎样去处理,在实际操作中有误差,这样就会让大部分学生会认为能围成三角形,对于这一点该怎样去处理确实让人头疼,经过研讨我们组老师建议尽量的减少教具的误差,之后加上课件的直观演示,可能会让学生能更好地理解,通过这一次的连片教研我更好地体会到这样做的原因了。
其次在教学过程中另一个让我们纠结的地方是到底是先研究能围成的两组,还是先研究不能围成的两组,经过讨论大家一致认为由学生的争议点2、6、8这一组不能围成的入手,但是到最后该怎样引导学生去自己探索三边之间的关系,在这一点上我做的有些生涩。经过这次的研讨,于华静老师给的建议让我顿时觉得开阔了很多,调整了研究的顺序让学生从简单入手,慢慢的深入研究,把主动性还给学生。这是我第一次以这样的形式参加连片教研,过程虽是难过,但是收获却是满满的!
《三角形三边关系》课后教学反思3
教育数学三角形的三边关系是在学生了解了三角形的一些基本特征的基础上学习的,学生虽然知道了三角形有三条边,但三角形“边”的研究却是学生首次接触,短短的四十分钟之内,要让学生从抽象的几何图形中得出三角形三边的关系这个结论,并加以运用,并非易事。因此,教学中,我让学生亲身经历了探究的过程,围绕“任意的三条线段能不能围成一个三角形?”这个问题让学生自己动手操作,发现有的能围成,有的不能围成,再次由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,接着重点研究“能围成三角形的三条边之间到底有什么关系?”通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论。这样教学符合学生的认知特点,既增加了兴趣,又增强学生的动手能力。通过本节课的教学,既让我感受到了成功的喜悦,同时也从课堂中暴露出了一些实际问题,下面我将从以下几方面反思本节课的课堂教学:
一、关注学生亲身经历
本节课的一个突出特点就在于学生的实际动手操作上,具体体现在以下两个环节:一是导入部分:学生从5根小棒中任意拿出3根,摆一摆,可能出现什么情况?结果有的学生摆成了三角形,而有的`学生没有摆成三角形,此时,老师接过话题:能否摆成三角形估计与三角形的“边的长度”有关系,它们之间有着怎样的关系呢?今天我们就一起来研究这个问题。这样很自然地就导入了新课,为后面的新课做了铺垫。二是新授部分:学生用手中的小棒按老师的要求来摆三角形,并且做好记录。这个过程必须得每个学生亲自动手,在此基础上观察、发现、比较,从而得出结论。苏霍姆林斯基曾说:“在人的心理深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者和探索者。而在儿童的精神世界中,这种需要特别强烈。”教学中,我有意设置这些实际动手操作、共同探讨的活动,既满足了学生的精神需要,又让学生在浓烈的学习兴趣中学到了知识,体验到了成功的快乐。
二、练习设计层层深入
本节课我设计了三个练习:
1、判断能否围成三角形。
2、小明从家到学校走哪条路最近?
3、寻找第三根小棒。
4、如何将一根铁丝截成三段,且能焊成三脚架?
评价一节数学课,最直接有效的方式就是通过练习得到的反馈。而学生之间参差不齐,为了能兼顾全班学生的整体水*,我在练习设计上主要采用了层层深入的原则,先是基础知识的练习;然后用三角形的知识解决实际问题;最后增加拓展延伸题,让优等生在这个知识点上的学习更进一步。而每一道题都运用了本节课的知识,每一道题目的呈现方式又都不同。这样既能让后进生跟得上,又能让优等生吃得饱,从而让全班同学共同进步。
但是从教学过程中我也反思了自己的不足之处。没有及时捕捉学生的智慧。学生在思考“能围成三角形三条边的关系”时,其中有一个学生说“我发现两条短边的和比另外一条边长时,就能围成三角形。”当时由于我考虑到为后面的“任意”二字做铺垫,并没有对学生的这个答案做过多的评价。其实这是判断三角形三条边的关系时一种最优化的方法。在教学中,我们不能束缚在教材的条条框框中,而忽视了班上少部分同学的灵感和智慧。在课堂中,如果我能及时捕捉这一信息,并因势利导,我相信本节课,不仅能找出三角形三条边的关系,还能找出能否三角形的三条线段的最优化方法,一定会为本节课增色不少。
《三角形的三边关系》说课稿3篇(扩展4)
——三角形边的关系教案10篇
三角形边的关系教案1
教学目标:
1、通过动手实践,自主探索,合作交流发现三角形任意两条边的和大于第三边。
2、能判断给定长度的三条线段是否能围成三角形,能运用三角形三边关系解决生活中简单的实际问题,感受到生活中处处有数学。
3、在探索体验的过程中,能进行简单、有条理的思考。通过学习,发展空间观念,体验成功的喜悦,激发学生学习数学的兴趣。
教学重点:
理解、掌握三角形任意两边之和大于第三边的性质。
教学难点:
引导探索三角形的边的关系,并发现三角形任意两边的和大于第三边的性质。
教学准备:
课件、不同长度纸条若干张、实验表格。
教学过程:
一、创设情境
1、出示情境图。
*
师:同学们仔细观察这幅图,想一想从老师家到学校有几条路可以走?
(学生通过观察并结合自己的生活经验,可以说出这样几条线路:从老师家直接到学校;从老师家经过*再到学校,或者从老师家经过新华书店再到学校。)
师:你觉得老师走哪条路最近呢?为什么?
(学生会说出中间这条线路最快,但原因说不清楚。)
师:今天,这节课我们就要从数学的角度眼研究为什么走中间这条路最近。
2、大胆猜测
师:请同学们观察,在这幅图中,你可以发现几个三角形?
(学生边说边用手指出两个三角形)
师:在每个三角形里,老师从家直走到学校的路程是三角形的一条边,走旁边的路走过的路程又是这个三角形的什么呢?
师:根据大家的判断,你们猜猜看,三角形三条边之间会有怎样的关系呢?
(学生通过观察会猜出:三角形两边的和大于第三条边)教师板书。
师:是不是所有是三角形的三条边都有这样的关系呢?你们能肯定吗?
现在,我们就用数学方法来研究一下,看看三角形中,三边的关系是怎样的?
揭示课题:三角形的三边关系。
二、自主探究
1、 动手实验1:用三张纸条摆一个三角形。
师:同学们的桌上都有一些不同长度的纸条,请大家随意拿三张来摆三角形,看看有什么发现?(同桌合作)
三角形边的关系教案2
教学内容:
北师大版小学数学四年级下册第二单元“三角形边的关系”。
教材分析:
《三角形边的关系》是四年级下册第二单元认识图形中的第四课内容,是小学“空间与图形”领域中新增添的内容,是在线段、角、顶点、三角形分类等三角形知识学习的基础上的延伸。为今后学习三角形面积和应用提供了重要条件。
学生分析:
从接触三角形以来,都是针对已成立的三角形进行学习和研究的,从未涉及到:“两边之和小于第三边的三条线段不能围成三角形”这一陌生领域。在生活实际中缺乏鲜活实例和经验,固而学生在学习该段内容时,会有与生活实践相割裂的感觉。学生对较抽象的问题无法明白其含义。所以这段知识的理解对学生来说有相当的难度,学生不够自信,没有勇气参与,学习的兴趣和主动性不足,无法完全独立的进行探究活动。需要老师以学生体验过程为主,以感知探索的方法为重,给予指导。
教学目标:
1、知识与技能:使学生发现并理解三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题。培养归纳、概括能力和推理能力。
2、过程与方法:让学生通过动手实践,分析数据,体验探索和发现三角形边的关系的过程,培养学生发现问题的意识及提出问题的能力,积累探索问题的方法和经验。
3、情感态度价值观:提高学生自主探索和合作交流的能力。激发对数学的探究兴趣,引导学生树立自己探索真理的勇气和信心,享受成功的喜悦。
教学准备:
多媒体课件、实物投影、小棒若干。
教学过程:
一、导入
1、师:同学们,最近几天咱们一直在围绕哪种图形进行学习?
(生:三角形)。
师:什么是三角形?
(生:由三条线段首尾相接围成的*面图行就是三角形。)
师:围成三角形的三条线段是三角形的什么?
(生:边。)
2、解释课题
今天咱们就来共同研究三角形的三条边之间有什么奥秘。
二、探究活动
1、用4组不同长度的小棒围三角形,初步感受能否摆成三角形与小棒的长度有关。
①师:刚才咱们说了“由三条线段首尾相接围成的*面图行就是三角形”,那么如果用小棒代替线段来围三角形,得用几根小棒?
师:是不是只要给你3根小棒你就一定能围成一个三角形?
师:怎么验证咱们说得对不对呢?
(生:实际动手摆一摆、围一围。)
师:那好,课前咱们都准备了几组长度不同的小棒,接下来咱们就来摆一摆。在动手之前咱们先来一起看一看“活动要求”。
②课件出示“活动要求”。
学生自读活动要求,师:清楚活动要求了吗?开始吧!。
③学生动手摆一摆并完成活动记录表。
④汇报活动结果。
师:通过刚才的活动,是不是只要是3根小棒就一定能摆成三角形?(生:不一定。)
师:在刚才的4组小棒中,那几组能摆成三角形?哪几组摆不成三角形?你觉得能否摆成三角形跟小棒的什么有关?(生:小棒的长度。)
2、进一步探究怎样的3根小棒能摆成三角形。
①课件分别演示4组小棒摆三角形的过程。
②两根短小棒长度之后小于长小棒时摆不成三角形。
出示第3组小棒(2,3,6)。
师:这3根小棒能摆成三角形吗?最后会出现什么情况?(2厘米和3厘米的两个短小棒与6厘米的小棒重合并且没能首尾相接。)
师:为什么这3根小棒摆不成三角形?(生:小棒太短了。)
师:为什么太短了?(生:2厘米加3厘米都不到6厘米,有缺口,接不上。)
师板书:2+3<6
师:这3根小棒能摆成三角形吗?(1,2,52,2,8)
师:咱们来观察一下这几组小棒之间的关系,什么情况下的3根小棒摆不成三角形?
归纳:两根短小棒长度之后小于长小棒时摆不成三角形。
③两根短小棒长度之后等于长小棒时摆不成三角形。
师:既然你们觉得小棒太短了围不成三角形,那我现在把2厘米的小棒延长1厘米,这时就成了第4组小棒(3,3,6)的长度,你们刚才摆成三角形了吗?
课件演示。
师:出现了什么情况?(3厘米和3厘米的两个短小棒与6厘米的小棒刚好重合。)
板书:3+3=6
师:那么3,5,8这3根小棒能摆成吗?5,6,11呢?
师:那么怎样的3根小棒也摆不成三角形呢?
归纳:两根短小棒长度之后等于长小棒时也摆不成三角形。
④小结
师:咱们能不能用一句话概括摆不成三角形的两种情况?
生:两根短小棒长度之后小于或等于长小棒时摆不成三角形。
⑤探究怎样的3根小棒能摆成三角形。
师:现在咱们知道了两根短小棒长度之后小于或等于长小棒时摆不成三角形,那大家能不能大胆猜测一下,怎样的3根小棒能摆成三角形?
生:两根短小棒长度之后大于长小棒时能摆成三角形。
师:是这样吗?咱们再来看看能摆成三角形的那两组小棒的长度,算一算是否验证了咱们的猜想。
学生算一算验证猜测。
师:那么怎样的3根小棒能摆成三角形?
归纳:两根短小棒长度之后大于长小棒时能摆成三角形。
3、进一步探究三角形边之间的关系
①师:这是咱们摆成三角形的那2组小棒。当我们用小棒摆成三角形后,小棒相当于三角形的什么?(生:三角形的边。)
②师:请你算一算,比一比。
学生同桌两人交流。
个别学生汇报计算结果。
③师:那么三角形的三条边之间有什么关系?
学生思考。
④归纳总结
三角形任意两边之和大于第三边。(板书)
师:这就是三角形边之间的关系。刚才咱们是从这两个三角形发现的这个结论。现在咱们利用课前画的任意三角形来算一算,看是不是任意一个三角形都具备这样的规律。
(学生计算验证)
三、随堂练习
师:通过刚才的学习我们知道了三角形任意两边之和大于第三边的规律。但学习的最终目的是学以致用。下面陈老师准备了一些习题,敢不敢试一试?
1、淘气从家到学校有两条路可以走。从下图中你能看出那条路近吗?用今天所学的知识说说你的理由。
《三角形边的关系》教学设计
2、完成“练一练”1-3
四、布置作业
练一练。4
五、全课小结
三角形边的关系教案3
教学内容:
人教版《义务教育课程标准实验教科书数学》四年级下册第82页的内容。
教学目标:
1.知识与技能:
(1)通过创设问题情境、观察比较,初步感知三角形边的关系,体验学数学的乐趣。
(2)运用“三角形任意两边的和大于第三边”的性质,解决生活中的实际问题。
2.过程与方法:
通过实践操作、猜想验证、合作探究,经历发现“三角形任意两边的和大于第三边”这一性质的活动过程,发展空间观念,培养逻辑思维能力,体验“做数学”的成功。
3.情感与态度:
(1)发现生活中的数学美,会从美观和实用的角度解决生活中的数学问题。
(2)学会从全面、周到的角度考虑问题。
教学重点:
理解、掌握“三角形任意两边之和大于第三边”的性质。
教学难点:
引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。
教学准备:
课件、学具袋。
教学过程:
(课前谈话)今天很高兴能认识各位在座的小朋友。我呀,是来自绿影小学的包老师。来之前,我就听说某某学校的小朋友,聪明伶俐,爱动脑筋,是不是这样啊?为了表扬同学们在课堂的表现,老师还特地带来了一些小奖品,瞧,都贴黑板上了。(三张不同颜色的小笑脸)你们喜欢吗?
如果你能答出老师的问题,老师就让你上来任意选一个小奖品。你们想选哪一个?有几种选法?(三种)
如果某个小朋友回答问题特别棒,老师就让你任意选两个。有几种选法?(三种)
教师:真不错,不知不觉中,同学们已经回答出老师的两个问题啦。希望大家再接再厉,在课堂上有更好的表现。
一、动手游戏,提出问题
教师:请同学们拿出你的1号学具袋,看看里面有什么?(三根小棒。)
三根小棒能围成一个三角形吗?
学生先猜。
教师:光猜可不行,知识是科学,咱们来动手围一围。
学生动手围,集体交流:有的能围成,有的不能围成。
教师请能围成和不能围成的同学分别上来展示一下。
同时板贴:能围成三角形不能围成三角形
教师小结:随意的给你三根小棒,有的时候能围成一个三角形,有的时候不能围成一个三角形。看来呀,咱们考虑问题的时候要全面、周到。
提出问题:那么,能围还是不能围,跟三角形的什么有关系呢?
引导学生明白:跟三角形的边有关系。
教师:对,三角形的边有什么样的关系呢?同学们,你们想不想自己动手来探究这个问题呀?
板书课题:三角形边的关系(让学生收拾好一号学具袋)
[设计意图:随意的给学生三根小棒,让学生先猜能否围成一个三角形,再通过动手围,发现有的三根小棒能围成三角形,有的三根小棒不能围成三角形。这不仅激活了学生的旧知,刺激了学生的思维,更激发了学生探索的欲望:能否围成一个三角形跟什么有关系,怎么的三根小棒才能围成三角形呢?]
三角形边的关系教案4
教学目标:
1、通过量一量、摆一摆、算一算等实验活动,探索并发现三角形任意两边之和大于第三边,并应用这关系解释一些生活现象,解决一些简单的生活问题。
2、在实验过程中培养学生的猜想意识、自主探索、合作交流的能力。
教学重点、难点:探索并发现三角形任意两边之和大于第三边。
教学准备:学生、老师各准备几根长短不等的小棒、直尺、探究报告单。
教学过程:
一、复习旧知,导入新课
这是什么图形呢?(三角形)谁来说说什么是三角形?怎样理解这个“围”字(端点首尾相连)。同学们还知道三角形的哪些知识?关于三角形的知识还有很多,我们继续往下看。
二、动手操作,发现问题
师:老师这里有三根小棒,分别长3、5、10厘米,这3根小棒能围成一个什么图形?
生:三角形。
师:谁愿意上来围一围?围的时候要注意小棒首尾相连。
师:这三根小棒为什么围不成三角形呢?三角形的三条边之间到底有什么关系呢?今天,我们就一起来研究三角形的三边关系(板书课题)。
三、猜想验证,发现规律
师:我们发现这三根小棒不能围成三角形,怎样做才能围成三角形呢?
生:换一根小棒
师:怎样换?同学们说的都是你们的猜想(演示猜想1)
1、学法指导
师:你们的这些猜想是否正确,三角形的三条边到底有什么关系?我们可以通过做实验来验证一下,现在老师给同学们准备了一些材料:3厘米、5厘米、8厘米、10厘米小棒各一根一起试着围一围三角形。同学们亲自动手摆一摆,拼一拼,看看有什么结果。先看要求(大屏幕)。
操作要求:
(1)、2人一组合作完成四种拼法
(2)、围三角形时要注意首尾相连。
(3)、完成后,填写好活动记录表准备交流
第一根小棒长
第二根小棒长
第三根小棒长
能否围成三角形
2、 动手操作,寻找规律(师巡视,并指导)
3、 交流汇报,探究规律。
师:哪个小组愿意来汇报。
小组上台展示,
3厘米、8厘米、10厘米 能
3厘米、5厘米、10厘米 不能
3厘米、5厘米、8厘米 不能
5厘米、8厘米、10厘米 能
师:其它组有不同意见吗?
师:仔细观察四种结果,有的围不成,而有的却能围成。这是为什么呢?先看不能围成三角形的每组小棒的长度之间有什么关系?说说你能发现些什么?同桌讨论一下。能围成三角形的这几组小棒长度之间又有什么联系?
三根小棒要围成三角形,必须满足什么条件?
通过刚才的实验和分析,你发现三角形三条边长度之间有什么关系吗?
先看不能围成三角形的这组情况,谁愿意说说3、5、10这三根小棒为什么不能围成三角形?
生:
师:其他同学赞同吗?谁再来说一说。
师:我明白了,3厘米的边是不能和5厘米、10厘米的边围成三角形的,因为这两条边之和小于第三条边。(板书3+4〈8)你很会观察。(演示)
师:再说3、5、8这三根,同学们有些争议,到底它们能不能围成三角形呢?不能,为什么?有谁愿意谈谈?
生:3+5=8 重合了 不能
师:是这样吗?(演示)请看大屏幕。
师:真的是这样,通过演示现在明白这个同学的意思了吗?谁愿意再来说一说。
师:通过以上的动手操作和探究分析,我们发现了当两边之和小于、等于第三条边时,这3条边是围不成三角形的。
师:那么怎样才能围成三角形呢?
生:两条边加起来要大于第三边就行了。
师(板书):两边之和大于第三边
师:我们来看看能围成三角形的这两组是不是这样的呢,3+8>10、8+5>10
看起来是这样的。
3、师:回头看不能围成的情况,也有3+8>4、4+8>3、3+8>5、5+8>3(两边之和大于第三边)的情况,怎么就不能围成三角形呢?
生:有一种不符合就不行了
师:看来只是其中的两条边之和大于第3条边是不完整的",
生1:加“任何”、“任意”
生2:其他两边之和都大于第三条边。
生3:无论哪两条边之和都要大于第三边。
4、归纳小结
师:看来只是其中的两条边之和大于第3条边是不完整的,
师:这句话概括说就是:任意两边之和大于第三边(板书:任意)
师:是这样吗?再挑选一组能围成三角形的三条边,来验证:
生:3+4>5、3+5>4、4+5>3,
师:这个例子证明了你的想法是对的,这两个三角形的三边关系都是:任意两边之和大于第三边(齐读)
四、课堂小结
老师在生活中还看到了这么一种现象:(演示)公园里有一条这样的路,路的两旁是草坪,为什么很多人都往草坪中间走?
师:今天你有什么收获?
其实数学就在我们身边,只要你*时多观察、多动脑,你一定能成为数学的好朋友。
三角形边的关系教案5
教学目标:
1.通过动手实践,自主探索,合作交流发现三角形任意两条边的和大于第三边。
2、能判断给定长度的三条线段是否能围成三角形,能运用三角形三边关系解决生活中简单的实际问题,感受到生活中处处有数学。
3.在探索体验的过程中,能进行简单、有条理的思考。通过学习,发展空间观念,体验成功的喜悦,激发学生学习数学的兴趣。
教学重点:理解、掌握“三角形任意两边之和大于第三边”的性质。
教学难点:引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。教学准备:、不同长度纸条若干张、实验表格。
教学过程:
一、创设情境
a怎样的三张纸条才能摆成一个三角形?让我们再来做一个实验。
2、动手实验2:进一步探究怎样的三张纸条才可以摆成三角形。
师:每组同学任意选择下面三组中的任意一组纸条做进一步实验,并完成相应的实验记录。(1)4c5c9c(2)3c6c10c(3)6c7c8c
学生汇报展示:能或不能摆成三角形任意两边的和是否大于第三边(1)不能4+5=94+9>55+9>4发现:两边之和有时大于第三边,有时等于第三边,不能摆成三角形(2)不能6+10>33+10>63+6<10发现:两边之和有时大于第三边,有时小于第三边,不能摆成三角形(3)能6+7>86+8>77+8>6发现:任意两边之和大于第三边,能摆成三角形师:对于三角形的三边关系,怎样表达更严密?体会任意两边的含义。
三、拓展应用:
1、说一说老师为什么走中间的这条路最近?
2、判断:哪一组中的3根小棒可以摆成一个三角形?(单位:厘米)
(1)3,6,9(2)4,4,10
(学生通过比较任意两边之和是否大于第三边,来判断是否可以围成三角形,教师再让学生讨论交流好方法)
3、解决问题:
师:小明想要给他的小狗做一个房子,房顶的框架是三角形的,其中一根木条是3分米,另一根是5分米。
(1)第三根木条可以是多少分米?(取整数)
(2)第三边的木条的长度是a分米,那么a的取值范围是() 四、回顾反思: 同学们,今天学到了什么知识?你最大的收获是什么?还有哪些不懂的地方吗? 设计说明 1.三角形3条边的关系是在学生已经掌握了三角形的概念、三角形具有稳定性的基础上学习的。本节课主要学习三角形3条边的关系及应用三角形3条边的关系解决一些实际问题。通过本节课的学习,可以为学生空间观念的发展、数学活动经验的积累提供机会,也可以为学生推理意识的建立和对推理过程的理解打下基础,还可以为学生应用自己的方式有条理地表达推理过程作铺垫。 2.教学中,根据小学生喜欢玩的天性,首先设计让学生拼摆三角形的动手操作活动,使学生一开始就进入到学习状态。在教师的引导下,当学生发现三角形3条边的关系后,出示教材上的情境图,让学生学会应用所学知识解决实际问题,训练学生灵活应用知识的能力,使学生在解决问题的过程中理解并掌握本节课的重点。 3.在教学过程中,由行动生问题,由问题生假设,由假设生验证,由验证生新价值,让学生在实践中自主学习、主动探究,从而提高学生的学习能力和创造能力。 课前准备 教师准备多媒体课件 学生准备长度不同的小棒 教学过程 ⊙情境导入 1.请同学们回忆一下,什么样的图形是三角形?[由3条线段围成的图形(每相邻两条线段的端点相连)叫做三角形]如果用一根小棒代表一条线段,围成一个三角形需要几根小棒?任意给你3根小棒,你能围成一个三角形吗? 2.同学们的意见不统一,究竟谁说得对呢?我们亲自用小棒摆摆看,请大家打开学具袋,从中任意取出一些小棒试试看。可以换小棒多试几组,注意小棒要首尾顺次相连。 设计意图:通过“3根小棒能不能围成一个三角形”这一问题,引发学生的认知冲突,激发学生探究三角形三边关系的学习兴趣。 ⊙探究新知 1.拼摆尝试。 师:任意取3根小棒,看能不能摆成三角形。(学生任意取3根小棒试着摆一摆,多摆几次,记录下来) 师:你发现了什么?(3根小棒有的能摆成三角形,有的不能摆成三角形) 师:在什么情况下3根小棒能摆成三角形?在什么情况下3根小棒不能摆成三角形?让我们用手中的学具通过小组合作来寻找答案。 2.合作实践。(出示课堂活动卡) 3.小组汇报。 预设 小组1:通过用小棒摆三角形,借助测量数据、分析数据,我们发现只有当三角形的其中两边的和大于第三边的时候才能摆成三角形。 小组2:我们小组发现,当三角形的任意两边的和小于或等于第三边的时候就不能摆成三角形。 (教师板书:三角形任意两边的和大于第三边) 4.我们在判断3条线段能否围成一个三角形时,是不是一定要写出3个算式才能判断呢? 讨论后得到以下结论:利用“两短边的和大于长边”就能判断3条线段能否围成一个三角形。 5.教学教材62页例3。 通过刚才的学习,同学们不仅掌握了判断3条线段能否围成一个三角形的方法,还找出了最佳的判断方法。请同学们观察小明上学的示意图,如果小明想走最短的路上学,你认为他会选择走哪条路?(他会选择走中间这条路)你是怎样判断的? 预设 生1:因为中间这条路是直的,其他的路是弯的,所以走中间这条路最近。 生2:如果小明走通过邮局到学校的这条路上学,小明家、邮局、学校则构成一个三角形,由三角形的3条边的关系可知,小明家到邮局,邮局到学校这两条边的和一定大于第三边,即中间这条路,所以走中间这条路最近。 教师小结:两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。 设计意图:通过拼摆三角形的活动,使学生发现三角形的3条边的关系,并能以此为依据,解决生活中的实际问题,体现了数学在生活中的应用价值。 教学目标: 1、探索并发现三角形任意两边的和大于第三边。 2、在实验过程中,培养学生自主探索合作交流的能力。 3、应用发现的结论,来判断指定长度的三条线段,能否组成三角形。 教学重难点: 1、探索并发现三角形任意两边之和大于第三边。 2、应用发现的结论,来判断指定长度的三条线段,能否组成三角形。 教具准备: 直尺、小棒 教学过程: 课前可以请学生准备四组小棒,课上组织学生摆一摆,让学生边操作边把有关的数据记录在表内。当学生完成操作活动后,教师可以组织学生先讨论能围成三角形的两组小棒的数据,并在填出“>”“<”或“=”。 一、数学活动 1、出示一组长短不一的几根小棒,请你挑选几根围成三角形。 不重复,你还可以怎么围? 通过实验,发现并不是任意三根小棒都可以围成三角形。出示不能围成三角形的情况,你发现了什么?想一想,为什么? 2、三角形形路线,从邮局到杏云村,走哪条路最近?为什么? 3、是不是任意两条边的程度的和一定比第三条边大呢?画一画,算一算。把计算结果填写在第33页的表上。 二、运用知识模型 1、第1题:下面各组线段能围成三角形吗? 2、第2题:组织学生用小棒摆一摆,并填入表中。 3、第3题:摆一摆,填一填。 4、第4题:如果三角形的两条边的长分别是5厘米和8厘米,那么第三条边可能是多长?有多个答案,第三边只要大于3厘米小于13厘米即可。鼓励学生尽可能多的得到答案。 三、总结 通过今天的学习你有什么想法? 板书设计: 三角形边的关系 三角形任意两边的和大于第三边 教学内容: 人教版《义务教育课程标准实验教科书数学》四年级下册第82页的内容。 教学目标: 1.知识与技能: (1)通过创设问题情境、观察比较,初步感知三角形边的关系,体验学数学的乐趣。 (2)运用“三角形任意两边的和大于第三边”的性质,解决生活中的实际问题。 2.过程与方法: 通过实践操作、猜想验证、合作探究,经历发现“三角形任意两边的和大于第三边”这一性质的活动过程,发展空间观念,培养逻辑思维能力,体验“做数学”的成功。 3.情感与态度: (1)发现生活中的数学美,会从美观和实用的角度解决生活中的数学问题。 (2)学会从全面、周到的角度考虑问题。 教学重点: 理解、掌握“三角形任意两边之和大于第三边”的性质。 教学难点: 引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。 教学准备: 课件、学具袋。 教学过程: (课前谈话)今天很高兴能认识各位在座的小朋友。我呀,是来自绿影小学的包老师。来之前,我就听说某某学校的小朋友,聪明伶俐,爱动脑筋,是不是这样啊?为了表扬同学们在课堂的表现,老师还特地带来了一些小奖品,瞧,都贴黑板上了。(三张不同颜色的小笑脸)你们喜欢吗? 如果你能答出老师的问题,老师就让你上来任意选一个小奖品。你们想选哪一个?有几种选法?(三种) 如果某个小朋友回答问题特别棒,老师就让你任意选两个。有几种选法?(三种) 教师:真不错,不知不觉中,同学们已经回答出老师的两个问题啦。希望大家再接再厉,在课堂上有更好的表现。 一、动手游戏,提出问题 教师:请同学们拿出你的1号学具袋,看看里面有什么?(三根小棒。) 三根小棒能围成一个三角形吗? 学生先猜。 教师:光猜可不行,知识是科学,咱们来动手围一围。 学生动手围,集体交流:有的能围成,有的不能围成。 教师请能围成和不能围成的同学分别上来展示一下。 同时板贴:能围成三角形不能围成三角形 教师小结:随意的给你三根小棒,有的时候能围成一个三角形,有的时候不能围成一个三角形。看来呀,咱们考虑问题的时候要全面、周到。 提出问题:那么,能围还是不能围,跟三角形的什么有关系呢? 引导学生明白:跟三角形的边有关系。 教师:对,三角形的边有什么样的关系呢?同学们,你们想不想自己动手来探究这个问题呀? 板书课题:三角形边的关系(让学生收拾好一号学具袋) [设计意图:随意的给学生三根小棒,让学生先猜能否围成一个三角形,再通过动手围,发现有的三根小棒能围成三角形,有的三根小棒不能围成三角形。这不仅激活了学生的旧知,刺激了学生的思维,更激发了学生探索的欲望:能否围成一个三角形跟什么有关系,怎么的三根小棒才能围成三角形呢?] 一、教学内容与学情分析; 本课的教学内容是人教版四年级下册第五单元第一课时《三角形的认识》。 学生通过第一学段和四年级上册的学习,对三角形已经有了直观的认识,能够从*面图形中分辨出三角形,认识了线段,学习了垂直,能从直线外一点画出这条直线的垂线。在此基础上,本课时安排了三角形各部分名称,定义,高和底等教学内容。为学习三角形的面积算法和各种图形打下基础。 二、教学目标 (一)知识与技能 在操作活动中,概括三角形的特征,认识各部分名称以及底和高的含义,会在三角形内画高,用字母表示三角形。 (二)过程和方法 在操作活动、概括中,积累认识图形的经验和方法。 (三)情感态度和价值观 培养学生学习数学的兴趣。 三、教学重难点 教学重点:理解三角形的概念,认识三角形各部分的名称,知道三角形的底和高 教学难点:会画三角形的高 四、教学准备 课件、实物投影 五、过程设计 一、欣赏图片,导入新课 师:同学们,老师今天带来了很多美丽的建筑图片,我们一起来欣赏一下。 师:谁能说说这些图片中都有哪种*面图形? 揭题:是的,每张图片中都含有三角形。三角形的奥秘非常多,那么它在我们的生活中究竟有什么作用呢?今天这节课我们就一起走进三角形,揭开三角形神秘的面纱。(板书课题:三角形的`认识) [设计意图:通过建筑图片,增强学生对数学源于生活的认识,激发学生学习的兴趣] 二、自主探究,学习新知 1、三角形的定义 (1)请同学们翻开书本第60页,自学有关三角形的内容。 (2)师:自学完了,如果现在让你画一个三角形,你会画么? 指名学生到黑板上画三角形,并介绍一下画的三角形有什么特点。 在学生说的时候板书:3个角,3条边,3个顶点 并提问:对他的发言你还有什么需要补充的吗? (4)师:这些是同学们刚才通过自学知道的知识,那你觉得到底什么样的图形才能叫做三角形呢? 指名不同的学生说。 刚才有同学说到:三条线段围成的图形叫三角形。(课件出示) 师:这句话里哪个词是关键? 师:三条线段围成是怎么样的?(出示:每相邻两条线段的端点相连。) 对这句话你们都理解了吗?那老师就要来考考你们了。 教师举出反例让学生判断。 师:现在你认为到底怎样的图形才叫三角形呢? [设计意图:帮助学生较好地理解“线段”、“围成”的含义,培养学生的抽象概括能力和语言表达能力] (5)师:你们每人都画了一个三角形,黑板上现在也有一个三角形,这么多的三角形,我们该怎么去区分它们呢?你们能给它们取个名字吗?(给它们标上字母) 师:老师给黑板上的三角形中的每个顶点分别标上ABC,那么这个三角形就记作三角形ABC。 在三角形ABC中,我们把这个点叫做顶点A,那么其他两个就是?这条边叫AB边,那么这两条是?请你想一想,这三个顶点,分别对应哪条边。 2、三角形的高 (1)师:看黑板上的三角形,如果小红家刚好就在点A,BC是一条小河,小红要去提水,你认为走那条路比较近? 师:是走AB这条路吗?还是走AC这条路呢?其实啊,这两条路都比较远,你能想到最近的路在哪里吗? 师:对了,就是从这个顶点出发,作对边的垂直线段。这条路才是最近的。 师:谁能上来把它画出来?指名,要求学生边画边说画垂线段的过程。 先把三角尺的一条直角边和BC这条边重合,使三角尺的另一条直角边经过点A,再沿着这条直角边画一条垂直的线段。(当学生说的不完整的时候请其他学生补充) 师:让我们重温一下刚才画垂线段的过程(课件演示) 师:像这样,从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫三角形的高,这条对边叫做三角形的底。 师:黑板上这条垂直线段就叫做三角形的高,与高垂直的BC边就叫做它的底。通常,三角形的高要画成虚线,还要标上直角符号。(板书:高、底) [设计意图:通过创设具体情境,然后学生借助已有的知识和经验解决具体的问题,形成知识迁移] (2)师:你会画高吗?请同学们在刚才自己画的三角形中画高。 (3)师出示判断题,哪些是三角形的高?刚才老师看到有同学的高是这样画的,他们画的对吗?为什么? 师:第四个图形画的是高吗?想想看,它是怎么画出来的。这时候谁是底? 师:为什么刚才把BC叫底,现在却把AB叫底呢? 师:刚才提到的过一个顶点可以向对边引出一条高,想一下,在这个三角形中你还能画出其他的高吗? 师:想想看,过点B如何画AC边的高?方法也一样,把三角尺的直角边和AC边重合,经过点B就能画出这条高,这时AC边就是三角形的底。(课件演示)看来在一个三角形中能画几条高?(从3个不同的顶点出发能画出3条不同的高) 师:你还能在自己的三角形中画出其他两条高呢? [设计意图:让学生初步感受三角形的底和高的相互依存关系] 三、应用拓展,提高技能 (1)师(课件出示):想象一下,这些三角形的高在哪里? 师:课件出示前面三个图形的高,这些高有什么变化?这是什么原因呢?(为什么高逐渐向右移动) 生:顶点向右移动。 师:如果顶点继续向右移动,那么最后一个三角形的高应该画在什么地方呢? 生:与另一条边重合了。 师:这是为什么呢?(因为是直角三角形)这里AC是高,哪条是底呢? 师:刚才我们知道了三角形都有三条高,你还能找出这个三角形的其他两条高吗?(学生找出) 师:原来直角三角形的两条直角边就是对应的两组底和高。 (2)师:现在老师把这四个图形放在一起,想一想,如果顶点继续向右移动,会出现怎样的三角形,高会出现在什么地方呢?(课件出示一个钝角三角形) 学生先想象,再指出高的位置。 师:如果顶点向左边移动呢?(课件出示)高又会出现在什么地方? 学生想象后,再指出。 师:请同学们仔细观察大屏幕,这些三角形有什么共同之处?(板书:同底等高) 师:想一下,为什么这些高的长度都相等呢?(顶点在*行线上移动) 师:如果顶点不在*行线上移动,他们的高还会一样吗? 学生回答,师演示。看来高的位置跟什么有关?是呀,同学们高是从顶点画出来的。 (3)师(隐去三角形,留下顶点和高、底的虚线):如果以顶点到垂足之间的线段为三角形的一条高,你能想象出这个三角形吗?它的底在哪里? 师:隐去底,现在你还能想象出三角形的底在哪里吗?请你画在练习纸上。 学生画,展示学生作品。 像这样只给指定高的三角形,你能画多少个三角形?那如果高确定了,底也确定了,现在你能画出几个三角形呢? [设计意图:让学生再次感受三角形的底和高的相互依存关系] 四、再现知识,总结反思 师:这节课你有什么收获,对于三角形的知识,你还有那些问题和疑惑? 这节课我们明确了三角形的特征:三个角、三条边和三个顶点,知道了高是从顶点出发画出来的,研究了顶点的特性,下节课我们还要继续探究三角形的其他奥秘。 六、作业设计 书本第65页练习十五第一题 七、板书设计 三角形的认识 3个角,3条边,3个顶点 三条线段围成的图形叫三角形 高底 八、教学反思 如何正确地理解并画出三角形的高是本节课的教学难点。为什么学生画高的时候会经常出现错误呢?分析思考后我发现很多学生都不能正确地找到顶点及相应的对边,学生的操作是在模仿中进行的,所以我让学生帮小红找最短的路径,让学生借助已有的知识和经验解决具体的问题,在具体情境中逐步理解三角形“高”和“底“的定义。然后逐步深入,让学生感悟三角形的底和高的相互依存关系,最后隐去三角形,和底让学生想象三角形的底在哪里,再次感受三角形的底和高的相互依存关系。 知识点 1、任意一个三角形内角和等于180度。 2、三角形任意两边之和大于第三边。 3、能应用三角形内角和的性质和三角形边的关系解决一些简单的问题。 4、四边形的内角和是360° 5、用2个相同的三角形可以拼成一个*行四边形。 6、用2个相同的直角三角形可以拼成一个*行四边形、一个长方形、一个大三角形。 7、用2个相同的等腰的直角的三角形可以拼成一个*行四边形、一个正方形。一个大的等腰的直角的三角形。 练习题 1.等腰三角形的一个内角是94°,那么它的另外两个内角是()和()。 2.三角形的两个内角之和是85°,第三个角是()°,这个三角形是()三角形。 3.一个直角三角形的一个锐角是45°,另一个内角是(),按边分这是()三角形。 4.三角形最多()个直角,最多()个钝角,最少()个锐角。 5.已知等腰三角形的一个内角是80°,另外两个内角分别是()、()或()、()。 参考答案 1.等腰三角形的一个内角是94°,那么它的另外两个内角是(43)和(43)。 2.三角形的两个内角之和是85°,第三个角是(10)°,这个三角形是(等腰)三角形。 3.一个直角三角形的一个锐角是45°,另一个内角是(45°),按边分这是(等腰)三角形。 4.三角形最多(1)个直角,最多(1)个钝角,最少(2)个锐角。 5.已知等腰三角形的一个内角是80°,另外两个内角分别是(50°)、(50°)或(80°)、(20°)。 教学内容 四边形分类P29~30页。 教学目标 1.知识目标:通过观察、比较、分类等活动,了解梯形的特征,进一步认识*行四边形。 2.技能目标:知道长方形、正方形是特殊的*行四边形。 3.情感目标:使学生在学习中学会观察,分析。 重点难点 重点:了解梯形的特征,进一步认识*行四边形;知道长方形、正方形是特殊的*行四边形。 难点:了解梯形的特征,进一步认识*行四边形;知道长方形、正方形是特殊的*行四边形。 教具准备 各种四边形的图片。 教学过程 一、创设情境。 师:看,淘气剪了许多四边形,你能将这些四边形进行分类吗? 学生对图形进行分类后进行汇报。 二、探究新知。 1.认识*行四边形和梯形。 教师展示学生的分类方法,如和课本不一致,引导学生观察智慧老人的分法。 教师总结: A.两组对边分别*行的四边形叫做*行四边形。 B.只有一组对边*行的四边形叫做梯形。 师:请学生说一说*行四边形和梯形的特征。 如学生说不出*行四边形对边相等,教师可以准备几根小棒。 师提问:你能选几根拼出一个*行四边形吗?你认为应该选择什么样的四条边? 学生进行选择,拼摆。 讨论得出结论:*行四边形每组对边想等。 2.长方形、正方形是特殊的*行四边形。 教师:长方形、正方形是*行四边形吗? 教师引导学生根据特征得出:长方形、正方形是特殊的*行四边形。 3.体会长方形、正方形、*行四边形、梯形、四边形之间的关系。 教师边引导边板书:如果用一个圈把*行四边形都放在里面的话,请你也画一个圈来表示长方形、正方形。如果*行四边形的外面再画一个圈,你觉得这应该是什么?再用一个圈画出梯形的地盘,应该怎么画?试试看。 三、巩固练习。 1.在第30页的点阵图上画出*行四边形、梯形和三角形。 学生独立完成,注意指导学生在画图是,借助点子,将图形画得美观。 2.第30页练一练1题分类。(剪下课本附页中的图形。) 学生独立完成,集体订正。 四、课堂总结。 你对这几种图形又有哪些新的认识?(学生发言) 五、课堂拓展。 如果把一个梯形,一条边不断地变小,一直小到一个点,就是什么形状?一直大到和下底相等,就是什么形状? 六、作业设计。 1.教材30页3题。 2.教材30页4题。 ——三角形面积说课稿3篇 指导思想: 积极配合莱州市、沙河镇在效率课堂研究月推出的一课多研活动,旨在强化数学课堂教学改革,实施课堂高效研究交流,系统化理论,进一步熟悉课堂教学结构,对课堂和谐高效教学进行再思考。 全体数学教研小组成员集中听评四年级数学课一节,集中研讨方案,进行个人反思修改,然后由教研组提出评课建议,进行一课多研的课例研究。 教学目标: 1、通过观察、操作认识三角形面积计算公式,并能正确计算相应图形的面积;了解三角形面积的计算方法。 2、经历探索三角形面积计算公式的过程,培养观察、比较、推理和概括能力,渗透转化思想,发展空间观念。 3、运用计算公式解决简单的实际问题。在解决问题的过程中,感受数学和现实生活的密切联系,体会学数学、用数学的乐趣。 教学重点: 理解并掌握三角形面积的计算公式。 教学难点: 理解三角形面积计算公式的推导过程。 教学过程: 一、直接引入 师:同学们,你知道我们每天都佩戴着鲜艳的红领巾是什么形状的?(三角形),怎样计算三角形的面积呢?这节课我们就一起来研究三角形的计算方法(板书课题) 二、探究新知 1、复习四边形面积的求法 师:回忆一下,*行四边形面积计算公式是什么?是怎么推导的? 师:我们是先把*行四边形转化成长方形,运用学过的长方形面积的计算公式,找到*行四边形与长方形之间的联系,推导出了*行四边形面积的计算公式,今天这节课,我们继续用转化的数学思想来探索三角形的面积怎样计算。 2、第一次操作实践 师:好,那怎样把三角形转化成我们所学过的图形呢?请同学们拿出学具袋里的各种三角形,两人一组想一想,拼一拼。(教师巡回指导) 3、交流反馈 师:同学们都拼好了,谁来说说你是怎样拼的? 生:我用两个直角三角形拼成了一个*行四边形。 师:我这也有两个直角三角形,可是拼不成,为什么?你有什么发现? 生:要用完全相同的三角形来拼。 师:你拼时怎么知道是两个完全相同的三角形呢? 生:把两个三角形重合就知道了。 师:对,要用两个完全相同的三角形来拼。 师:还有不同的拼法吗? 生:我用两个完全相同的锐角三角形拼成了一个*行四边形。 生:我用两个完全相同的钝角三角形也拼成了一个*行四边形。 师:看看这几种拼法它们有什么共同点呢?认真观察,同桌互相说说。 4、第二次操作实践 师:下面我们再次合作,根据你们转化的图形,找到它们之间的联系,推导出三角形面积的计算公式。(生讨论交流) 师:谁来说说你是怎样推导的? 生汇报 师板书:三角形的面积=底×高÷2 师:仔细观察所拼成的*行四边形的底与三角形的底,所拼成的*行四边形的高与三角形的高看看有什么发现? 师:我们把这种相等的关系叫等底等高。 师:那么三角形的底乘以三角形的高求出的是什么? 生:与三角形等底等高的*行四边形的面积。 师:为什么除以2呢? 生:因为三角形的面积是与它等底等高的*行四边形面积的一半,所以要除以2。 师:无论什么样的三角形,它的面积都可以转化成*行四边形的面积来计算,所以我们得到三角形的面积公式=底×高÷2 师:谁能用字母表示三角形的面积公式 板书s=ah÷2 三、运用公式,解决问题 师:利用三角形面积公式,我们可以方便地解决一些实际问题了!老师这里有一条红领巾,求它的面积,你需要知道什么条件?你能估测一下这条底边有多长吗? 师:它的高是33厘米,你能计算出它的面积吗? 在练习本上算一算 学生打开书32页,在书中画一画 师:你画出了几个面积相等的三角形?如果给你足够的时间你能画出多少个这样的三角形? 生:无数个 师:通过画这样的三角形,你发现了什么? 生:三角形的面积与底和高有关,与形状无关。 四、总结收获 这节课我们运用转化的思想,通过拼摆把三角形转化成与它等底等高的*行四边形,推导出三角形面积公式,大家还有不明白的地方吗?实际上我们还可以运用剪拼或折叠的方法来推导三角形面积公式,课下同学们可以动手试一试。 师:同学们,这节课你最大的收获是什么? 生:我学会了三角形的面积怎样计算。 生:我学会了用转化的方法推导三角形的面积计算公式。 师:下节课我们继续运用转化的思想探究梯形面积的计算方法。 教学评课: 纵观本节课教学,教师教学思路清晰,运用了自主探究,合作交流,亲身实践的学习方式。课前导语可以创设情境,揭示课题,进一步激发孩子的求知欲。在设计教学环节时注意了学生已有知识基础,但缺乏对经验背景的引导,按照学生的认知规律组织教学,上课时应该先复习了*行四边形面积的推导过程,然后让学生探究三角形面积的计算方法,这样,教师根据学生已有的知识以旧引新,衔接自如。 一、说教材 首先其推导方法与*行四边形面积公式的推导方法有相通之处。同时本课也是学习梯形、组合图形面积的基础,在实际生活中这部分的应用也非常广泛,所以本课内容的学习是很重要的。 二、说教学目标及重难点 根据三维目标的要求,本节课的目标确定为三个: 1、引导学生经历三角形面积公式的探究过程,掌握三角形面积公式,并会用字母表示,会用公式计算三角形面积。 2、通过探究,培养学生实际操作能力、自主探究能力、与他人合作交流能力以及运用数学知识解决实际问题的能力。 3、在学生经历动手操作、讨论、归纳等探究学习中,体验三角形面积公式推导过程的严密性和公式的确定性,进一步感受转化的数学思想和方法,并获得积极的、成功的情感体验。 教学重点:探索并推导三角形的面积公式,会根据公式计算三角形的面积。 教学难点:学生理解面积公式的推导过程,弄清楚为什么除以2. 三、说教法、学法: 教法:由于小学生的认知规律是从具体到抽象,他们有好奇好动的特点。在教学中我采用情境教学法、探究法、实验法等教学方法充分调动学生的主观能动性,力求体现自主性教学原则。 学法:根据本课可操作性的特点,以及学生为主体,教师为主导的教学原则,在学法指导上以学生动手操作为主,配以小组合作学习法,讨论法进行自主探究式学习。 四、教学准备 多媒体课件;小黑板;学具 (两个完全一样的直角三角形、锐角三角形、钝角三角形,一个长方形,一个*行四边形,任意三角形3个),剪刀一把。 五、说教学流程 为了能更好凸显"自主探究"的教学理念,我设计了五个环节:(一)创设情境,激趣引入(二)合作探究,寻找方法(三)实践应运,拓展延伸(四)归纳总结,畅谈收获 (一)创设情境,激趣引入 我通过创设故事情境来引入新课。课件演示:秋天来了,森林的小动物可高兴了,这一天,小狗、小猫、和大公鸡聚到了一起。,它们都认为自己的三角形最大,可是谁也说服不了对方。同学们,你们愿意帮他们解决这个问题吗?那么"要比较三角形的大小就是比较什么呢?"学生会很轻松地回答"要比较三角形的大小就是比较三角形的面积。"今天我们就一起来探索如何计算三角形的面积。(从而揭示课题:三角形面积计算,并板书课题。)让学生猜测三角形的面积可能和我们学过的什么图形有关系?学生独立思考后得出:可能与长方形和*行四边形的面积有关系。由此复习长方形和*行四边形的面积公式以及*行四边形面积公式的推导方法。引导学生思考:能不能把三角形转化成我们学过的图形来计算呢?此方法不仅很好的复习了旧知识,为新知识学习做好铺垫,还调动了学生学习的积极性,激发了学生的探究欲望。 (二)合作探究,寻找方法 这一环节我安排了4个小环节: 第一个环节合作探究奥苏伯尔说过:只有学生亲身经历、感受的东西才能真正理解和掌握。这里,我没有采用传统"省时高效"直接告诉学生答案的方法,而是让学生利用手中两个完全一样的直角三角形和长方形材料小组合作想办法解决。 第二环节汇报交流在小组充分操作、讨论、交流后,出示课件,与学生一起总结出:用两个完全一样的直角三角形可以拼成一个长方形,或者一个长方形可以剪成两个完全一样的直角三角形。从而得出每个直角三角形的面积等于拼成的*行四边形面积的一半;拼成的*行四边形的底等于直角三角形的底,*行四边形的高等于直角三角形的高。并对表现出色的小组给予表扬。 第三环节精讲,再次提出挑战性问题:那么锐角三角形、钝角三角形与*行四边形之间是否也有这样的关系呢?同学们想不想亲自来验证一下?再次激发学生的探究欲望。此环节采用小组合作,自由发挥,自主探索,使学生成为课堂的主人。最后每个小组选代表边演示边汇报探究结果。我出示多媒体课件,引导学生得出:每个锐角三角形的面积等于拼成的*行四边形面积的一半;每个钝角三角形的面积等于拼成的*行四边形面积的一半。 通过学生动手操作和学习,他们对三角形面积公式理解得更加透彻,能清楚的认识到因为三角形的面积是拼成的*行四边形面积的一半,所以要除以2从而突破难点。然后引导学生说出:用字母表示三角形面积的计算公式。 在学生拼摆过程中进行转化很自然地渗透"旋转""*移"的思想。同时我还注意引导学生用多种方法探究三角形面积计算公式,我用课件演示方法,通过演示,使学生的思维开阔了,他们会觉得学习数学是一件很有趣的事,会感到数学问题的解决,往往有多种方法和途径。这样学生在今后解决数学问题时,主动探索的积极性也会逐渐增强。学生动手操作,不仅仅是理解三角形面积计算公式这一数学知识的需要,而且也是探究型学习方式的需要。组织学生进行小组合作交流,让学生间相互分享各自的学习成果,达到自我教育,相互学习的目的。 第四环节质疑,在这节课的学习中你还有什么地方不明白?在学习中你遇到了什么困难?你是怎样克服的?学习中你发现了什么数学问题? 这样设计的目的是使学生突破难点对这部分的知识理解的更加的透彻。 (三)实践应运,拓展延伸 数学是为生活服务的,在推导出*行四边形的面积公式之后,为了了解学生的掌握程度,检验他们能否学以致用,通过练习,使学生加深对公式的理解与应用达到熟练灵活掌握的目的,实现了学习数学的价值。让学生在运用知识解决问题的过程中,增强数学的应用意识,提高解决问题的能力。我设计下面几组练习: (1)基本练习,检测学生直接运用公式进行计算的情况,并适时进行品德教育。 (2)综合练习,深化对推导原理的理解,加深学生对公式特征的认识。 (3)拓展练习,培养学生解决问题的能力。 设计意图:练习设计由浅入深,层层递进,紧扣课题,不但使学生所学的知识进一步深化,而且使学生在练习中思维得以发展,探究能力得到提高,创新素质得到锤炼。 (四)归纳总结,畅谈收获 回想这节课所学内容,说说自己有哪些收获? 这一环节主要是再次把学习的主动权交给学生,让学生在愉悦的氛围中谈收获谈体会,及时评价,学生间互相补充,共同完善,既整理了本课所学知识,又有利于学生学习能力的培养。 六、说板书设计 板书设计力求简单明了重点清晰,能让学生一目了然。突出了教学的重点,有利于学生更好地掌握和巩固本节课所学的内容。 我将从说教材,学情、教法、学法、教学过程板书设计这六个方面进行,下面开始我的说课。 一、说教材 ①知识与技能目标: 掌握三角形面积的计算公式,会用公式计算三角形的面积; ②过程与方法目标: 在探索三角形面积的计算公式过程中,渗透转化的数学思想,培养学生自主探究能力、小组合作能力; ③情感态度和价值观目标: 感受面积公式推导过程中的条理性和数学结论的确定性,体验成功的乐趣。 通过对教材和教学目标的分析,本课的教学重难点我认为是理解和掌握三角形面积的计算公式及推导过程。 二、说学情 奥苏伯尔认为:“影响学习的最重要因素,就是学习者已经知道了什么,要探明这一点,并据此进行教学。”因此,在教学之始,关注学生的基本情况很重要。五年级的学生他们的思维已经开始由具体形象思维过渡到抽象思维,但他们的概括能力较弱,推理能力还有待提高,因此我会紧扣学生已有的知识经验,创设有助于学生自主学习,合作交流的情境。 三、说教法 基于对教学内容、学情的分析和新课改的要求,本课我主要采取以讲授法为主,辅助以启发式教学法,讨论交流法,练习法等来展开教学,从而达到培养能力,养成良好习惯的目的。 四、说学法 科学的学习方法十分重要,它是打开知识宝库的“金钥匙”,是通向成功的“桥梁”。本节课我对学生采用自主探索,小组讨论的方式,培养他们合作交流,自主归纳数学规律的能力。 五、教学过程 教学过程是本次说课的核心环节,所以我将着重介绍一下教学过程。 1.创设情境,导入新知 上课伊始我会通过红领巾的谜语导入,然后给学生们讲解红领巾的由来,是无数先辈用鲜血浇筑来的。呼吁同学们以后要正确佩戴红领巾以及要爱护珍惜它。然后询问学生们红领巾是什么形状的,这个三角形的面积应该怎样求呢,进而引出新课。 通过数学谜语导入,一方面增加学生们参与课堂的积极性,另一方面激发学生强烈的求知欲,更好的完成本课的教学。 2.诱导启发,发现新知 在这一环节中,我设计了以下2个学习活动 活动一:三角形面积公式的推导 首先让学生们思考上节课的*行四边形面积是如何推导而来的呢?进而发现当遇到未知的图形我们可以转化成已知的图形解决。其次引导学生四人为一小组进行讨论,看三角形可以转化成什么已知图形。小组汇报为可以把两个相同的锐角三角形拼成一个*行四边形,也有其他的组补充为两个一模一样的钝角三角形拼成一个*行四边形,还有汇报为两个同样大小的直角三角形可以拼成一个正方形。再次引导学生观察拼成后的图形与已知图形,有什么发现,三角形的面积应该如何计算?学生不难回答为两个三角形可以拼成一个*行四边形,所以三角形的面积计算公式应该是底乘高除以二,也就是*行四边形面积除以二。最后在三角形上用字母a和h分别标出底和高,顺势总结用字母表示公式为S=ah.肯定学生们的发现,并给与正面的评价。 活动二:三角形面积公式的应用 首先大屏幕上给出红领巾的底和高,然后引导学生根据刚才推导出的计算公式进行计算。其次提问学生进行板演,可以对三角形面积的公式进行灵活应用。再次请同样思路的学生讲解计算方法。三角形的计算公式是底乘高除以二,得出100想33÷2=1650cm2.最后总结红领巾的面积计算方法。 在这些活动中,把学生置于学习的主体地位,鼓励,引导学生培养他们的独立学习的能力,合作探究的精神和创新意识。 3.实践练习,巩固新知 我设计了让学生认真观察大屏幕上道路交通警示标识,并且询问一块标识牌的面积大约是多少*方分米,旨在培养学生进一步理解和掌握三角形面积的计算公式。 4.引发反思,全课小节 通过让学生回顾新知,谈收获,给学生再次交流的机会,让学生互相提醒,进一步突出本节课的知识要点。师生共同完成课堂评价。 5.布置作业,课后提高 根据学生的个体差异性,为更好的体现因材施教的原则作业我将分为必做题和选做题,必做题是课后练习;选做题是找找生活中的运用。 ——《三角形三边的关系》教学设计3篇 【教材分析】 本节教学的《三角形三边的关系》是人教版课程标准实验教材四年级下册第82页的内容。三角形三边关系是在学生已经初步认识角,认识三角形,知道三角形有3条边,3个顶点,三个角,以及三角形具有稳定性的学习基础上的延伸。本节教材强调通过直观操作来认识、体验、探索图形的性质。让学生通过操作获得一些数据,特别重视对探索过程的亲身体验。学好这部分内容,不仅可以丰富学生对三角形的认识和理解,培养学生思维的严密性,发展学生的空间观念,同时还为后续的几何图形知识的学习积累一定的经验。 【学生分析】 在以往空间与图形的学习过程中,学生已初步养成了动手操作的意识;对角、三角形的分类等建立了基本概念。但学生从接触三角形以来,都是针对已成立的三角形进行学习和研究的,从未涉及到:“两边之和小于第三边的三条线段不能围成三角形”这一陌生领域。在生活实际中缺乏鲜活实例和经验,固而学生在学习该段内容时,会有与生活实践脱离的感觉。学生对较抽象的问题无法明白其含义。所以这段知识的理解对学生来说有相当的难度,学生不够自信,没有勇气参与,学习的兴趣和主动性不足,无法完全独立的进行探究活动。需要老师以学生体验过程为主,以感知探索的方法为重,给予指导。 【设计理念】 “三角形三边的关系”是人教版课程标准实验教材四年级下册“三角形”中的第三课时,该课时是在学生初步了解了三角形的定义的基础上,进一步研究三角形的特征,即三角形任意两边的和大于第三边。三角形三边关系定理不仅给出了三角形三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准,熟练灵活地运用三角形的两边之和大于第三边,是数学严谨性的一个体现,同时也有助于提高学生全面思考数学问题的能力,它还将在以后的学习中起着重要的作用。教学中,教师根据小学生喜欢玩的天性,首先设计让学生折塑料管引发学生猜想,使学生一开始就进入学习状态,同时产生认知冲突,为后面的学习铺好路。再用小棒围三角形进行验证,引导学生动手操作、观察比较、交流、抽象概括,当学生发现三角形三边的关系后,教师这时再出示书上的一组数据让学生判断,训练学生灵活运用知识的能力,接下来教师出示书上的情景图,让学生学会运用知识解决实际问题,这一环节的设计,主要是引导学生学会看书,毕竟书本是我们学习最直接的.资料之一,我们应好好的加以运用。本节课的后半部主要是出示一些实际问题,让学生在解决问题地过程中理解、掌握本节课的重点。 【学习目标】 知识与技能:使学生发现并理解:三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题。培养归纳、概括能力和推理能力。 过程与方法:让学生通过动手实践,分析数据,体验探索和发现三角形边的关系的过程,培养学生发现问题的意识及提出问题的能力,积累探索问题的方法和经验。 情感态度价值观:提高学生自主探索和合作交流的能力。激发对数学的探究兴趣,引导学生树立自己探索真理的勇气和信心,享受成功的喜悦 教学重点:三角形三边关系的实验与探究。 教学难点:利用三角形三条边之间的关系解决实际问题。 【教学准备】 课件、饮料吸管、小棒 【教学过程】: 一、设疑导入 1、设疑。 师:请同学们看屏幕,你看到了什么图形? 生:三角形 师:几条线段可以围成一个三角形?(三条)三条线段一定可以围成一个三角形吗? 学生讨论,然后在小组内交流自己的想法。 2、折饮料管初步感知 请学生将饮料吸管任意折成三段,看能否围成一个三角形。 师:刚才大家都非常积极主动,不过有的同学能围成一个三角形,有的同学却不能,这里面有什么奥秘呢?哪位同学来展示一下自己没有围成三角形的作品? 展示作品,思考怎样才能使它围成一个三角形? 组织学生讨论,交流汇报: 生1:如果上面两根短的小棒的长度的和与长的小棒相等,就能围成一个三角形了。 生2:我不同意你的看法,因为上面的两根短的小棒的长度的和与长的小棒相等时,组合成的图形就*行或者重合了。 生3:我认为只有上面两根小棒的长度的和大于下面的小棒,才可能围成一个三角形。 师:刚才,同学们都发表了各自的看法,有的同学认为两根短的小棒的长度的和与长的小棒相等,可以围成一个三角形。也有的同学反对,还有的认为两根小棒的长度的和大于长的小棒,才可能围成一个三角形。然而,这仅仅是我们的猜想。什么样的三根小棒才可以围成一个三角形呢?看来三角形的三条边之间一定存在着某种特殊的关系,那是什么呢?今天啊,我们就来当一回小小数学家,去探索和发现三角形三边之间的关系。(板书:三角形边的关系) 【设计意图:学生通过折饮料吸管,在实践中发现数学问题,引发了认知冲突。教师组织学生讨论让学生初步感知能否围成一个三角形,与三角形的三条边长度有关,为学生进一步学习“三角形三边的关系”指明探索方向。】 二、实验感悟 1、合作探究 师:为了弄明白三角形三条边之间的关系,我们来做一个实验: 学生拿出课前准备好的信封,内有4厘米、5厘米、6厘米、和10厘米的小棒各一根 师:我们先来学习“小组合作学习”的要求(课件显示,指名朗读) 操作要求: ①测量每一组三根小棒的长度,并填入实验记录表中。 ②算一算、比一比,每组任意两根小棒的长度和与第三根小棒长度的关系。 ③一人记录,两人用小棒搭建三角形,小组长负责指导。 推荐访问:角形
关系
说课稿
《三角形三边关系》说课稿3篇
《三角形的三边关系》说课稿1
《三角形的三边关系》说课稿1分钟
三角形边的关系教案6
三角形边的关系教案7
三角形边的关系教案8
三角形边的关系教案9
三角形边的关系教案10
《三角形的三边关系》说课稿3篇(扩展5)
三角形面积说课稿1
三角形面积说课稿2
三角形面积说课稿3
《三角形的三边关系》说课稿3篇(扩展6)
《三角形三边的关系》教学设计1