当前位置: 简表范文网 > 专题范文 > 公文范文 >

湘教版九年级上册数学教材分析(10篇)

| 来源:网友投稿

湘教版九年级上册数学教材分析(10篇)湘教版九年级上册数学教材分析  湘教版数学九年级上册全册教案及单元知识点总结  第1章反比例函数  1.1反比例函数  【知识与技能】理解反比例函数的概念,根据实际下面是小编为大家整理的湘教版九年级上册数学教材分析(10篇),供大家参考。

湘教版九年级上册数学教材分析(10篇)

篇一:湘教版九年级上册数学教材分析

  湘教版数学九年级上册全册教案及单元知识点总结

  第1章反比例函数

  1.1反比例函数

  【知识与技能】理解反比例函数的概念,根据实际问题能列出反比例函数关系式.【过程与方法】经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.【情感态度】培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.【教学重点】理解反比例函数的概念,能根据已知条件写出函数解析式.【教学难点】能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.

  一、情境导入,初步认识1.复习小学已学过的反比例关系,例如:(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)2.电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R

  的代数式表示I吗?【教学说明】对相关知识的复习,为本节课的学习打下基础.

  二、思考探究,获取新知探究1:反比例函数的概念(1)一群选手在进行全程为3000米的赛马比赛时,各选手的平均速度v(m/s)

  与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.(2)利用(1)的关系式完成下表:

  湘教版数学九年级上册全册教案及单元知识点总结

  (3)随着时间t的变化,平均速度v发生了怎样的变化?(4)平均速度v是所用时间t的函数吗?为什么?(5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?【教学说明】一般地,如果两个变量x,y之间可以表示成yk(k为常数

  x且k≠0)的形式,那么称y是x的反比例函数.其中x是自变量,常数k称为反比例函数的比例系数.

  【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.

  探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v3000,其中自变量t可以取哪

  t些值呢?

  分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t代表的是时间,且时间不能为负数,所有t的取值范围为t>0.

  【教学说明】教师组织学生讨论,提问学生,师生互动.三、运用新知,深化理解

  1.见教材P3例题.2.下列函数关系中,哪些是反比例函数?(1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系;(2)压强p一定时,压力F与受力面积S的关系;(3)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系.(4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关系式.

  湘教版数学九年级上册全册教案及单元知识点总结

  分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符

  合yk(k是常数,k≠0).所以此题必须先写出函数解析式,后解答.x

  解:(1)a12,是反比例函数;h

  (2)F=pS,是正比例函数;

  (3)FW,是反比例函数;s

  (4)ym,是反比例函数.x

  3.当

  m

  为何值时,函数

  y

  4x2m2

  是反比例函数,并求出其函数解析式.

  解:由反比例函数的定义可知:2m-2=1,m3.2

  所以反比例函数的解析式为y4.x

  4.当质量一定时,二氧化碳的体积V与密度ρ成反比例.且V=5m3时,ρ

  =1.98kg/m3

  (1)求p与V的函数关系式,并指出自变量的取值范围.

  (2)求V=9m3时,二氧化碳的密度.

  解:略

  5.已知y=y1+y2,y1与x成正比例,y2与x2成反比例,且x=2与x=3时,

  y的值都等于19.求y与x间的函数关系式.

  分析:y1

  与

  x

  成正比例,则

  y1=k1x,y2

  与

  x2

  成反比例,则

  y2

  k2x2

  ,又由

  y

  =y1+y2,可知,

  y

  k1x

  k2x2

  ,只要求出

  k1

  和

  k2

  即可求出

  y

  与

  x

  间的函数关系

  式.

  解:因为y1与x成正比例,所以y1=k1x;

  因为

  y2

  与

  x2

  成反比例,所以

  y2

  k2x2

  ,

  而

  y=y1+y2,所以

  y

  k1x

  k2x2

  ,

  当x=2与x=3时,y的值都等于19.

  所以

  1919

  2k13k1

  k24k29

  .

  .

  湘教版数学九年级上册全册教案及单元知识点总结

  解得

  kk12

  536

  所以

  y

  5x

  36x2

  .

  【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解

  析式.

  四、师生互动,课堂小结

  先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补

  充.

  布置作业:教材“习题1.1”中第1、3、5题.

  学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.

  湘教版数学九年级上册全册教案及单元知识点总结

  1.2反比例函数的图象与性质

  第1课时反比例函数yk(k>0)的图象与性质x

  【知识与技能】1.会用描点法画反比例函数图象;2.了解并学会应用反比例函数yk(k>0)图象的基本性质.

  x【过程与方法】观察、比较、合作、交流、探索.【情感态度】通过对反比例函数的图象的分析,探索并掌握反比例函数yk(k>0)的图

  x象的性质.

  【教学重点】画反比例函数的图象,理解反比例函数yk(k>0)的性质.

  x【教学难点】理解反比例函数yk(k>0)的性质,并能灵活应用.

  x

  一、情境导入,初步认识你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性

  质呢?反比例函数的图象又会是什么样子呢?【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函

篇二:湘教版九年级上册数学教材分析

  一元二次方程

  一、教材分析1.教材结构分析教材遵循“问题情境---建立模型---解释、应用与拓展”的课程基本模式。先以一个“因人们收入不断提高,汽车产业的快速发展,汽车已起来越多地进入普通家庭”的实际问题作为开篇,并在第一节中又给出一个关于“从矩形中挖去一个圆,求剩余面积”的实际问题,引发学生思考、讨论,构建方程模型。通过引导学生对这两个方程结构的观察,透过表象抽象这两个方程的本质特征,从而归纳得出一元二次方程的概念、一般形式,附带牵出对二次项系数、一次项系数、常数项的定义。再通过对两个典型例题的分析和随堂练习,加深对一元二次方程的概念和一般形式的理解。体现了研究代数学问题的一般方法.2.教材功能分析针对实际问题,建立方程,引发学习本章内容的需要,体验运用数学知识解决实际问题的基本过程,积累数学活动经验,培养学生观察问题、分析问题、抽象概括事实本质和方程模型思想。二、学生分析1.已有知识背景学生在七年级上册学习了一元一次方程,七年级下册对“元”进行扩展,得到二元一次,完成了二元一次方程组的学习,八年级上册分式的教学,使得对实际问题的刻画从整式推广到有理式,分式方程得以出现。2.已有活动经验所任教班级分为六个学习小组,学生基本掌握了自主、合作、探究的学习方式,初步感受了方程的模型作用,并积累了一些利用方程解决实际问题的经验,解决了一些实际问题,知道了基本步骤(审设列解验答).3.问题诊断分析九年义务教育的普及,使得本地农村学生发展极不平衡,两极分化现象突显。一元二次方程第一次实现“次”的提升,新事物的产生,学生必然存在着疑问。同时,一个学期没有触及到方程,对等量关系的确立认知模糊,对题意的理解、抽象事物的本质、归纳概括事实、数学符号语言的应用等能力相对偏弱。基于此,本课的教学重点确定为一元二次方程概念的形成过程,教学难点是一元二次方程的概念和对一元二次方程的项、系数的认识.三、教学目标1.知识技能1)理解一元二次方程的概念.2)掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.2.数学思考1)通过一元二次方程的引入,培养学生建模思想,分析、归纳、解决问题的能力.2)通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.

  3)由知识来源于实际,树立转化的思想,渗透方程的思想。3.解决问题在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.4.情感态度1)培养学生主动探究知识、合作交流的意识。2)激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识。教学重点:一元二次方程的概念及一般形式.教学难点:由实际问题向数学问题的转化过程.四、目标解析1.通过实际问题的解决,让学生体会到未知数相乘(或因面积问题)导致方程的次数升高,从而说明一元二次方程存在的实际背景,感受一元二次方程是重要的数学模型,体会到学习的必要性.2.将不同形式的一元二次方程统一为一般形式,学生从数学符号的角度,体会概括出数学模型的简洁和必要,针对“二次”规定a≠0的条件,完善一元二次方程的概念。学生能够将一元二次方程整理成一般形式,准确的说出方程的各项系数,并能确定简单的字母系数方程为一元二次方程的条件.五、教学模式:概念形成的教学模式(理论依据:奥苏贝尔的上位学习理论)。

  具体例子

  观察共性

  抽象本质

  形成定义

  形成概念域(系)

  概念应用

  强化概念

  六、教学方法:启发式+讨论式七、教学过程设计1.创设情境,探究交流PPT展示教材“动脑筋”,单数组探究交流情境(1),双数组探究交流情境(2)。

  思考:(①x2-2500=0;②25x2+50)问题1.这两个方程属于我们学过的某一类方程吗?师生活动:学生独立思考,组员合作,小组内部交流,选派代表展示小组成果,其他学生提出质疑;整理已经学过的方程类型,复习方程的概念,元与次的概念;观察新方程,分析此方程的元与次,尝试为新方程命名。老师参与小组活动,适时指导,梳理思路,解疑释惑。【设计意图】新课标指出:“学生是数学学习的主体,在积极参与学习活动的过程中不断得到发展;教师应成为学生学习活动的组织者、引导者、合作者,为学生的发展提供良好的环境和条件。”问题情境具有一定的挑战性,为满足学生的求知欲和好胜心,问题解决给足学生充分的时间和空间,使学生充分认识到(一元二次方程)是刻画某些实际问题的模型,体会学习的必要性,在学生已有的知识的体系中合理的构建一元二次方程这一新知识.2.关注过程,促进内化情境(3):城南中学举行九年级班级篮球循环赛(每两个班之间都要比赛一场),根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,请说说城南中学九年级共有多少个班级?教师引导学生思考并回答以下几个问题:全部比赛共有______场.若设城南中学共有x个班级,则每个班要与其他____个班各赛一场,全部比赛共有___场.由此,我们可以列出方程______________,化简得_______________.问题2.情境(1)(2)(3)中的这些方程含有多少个元?最高次数是多少?师生活动:学生在教师的引导下,将实际问题中的语言转化成数学符号语言,寻找等量关系,学习建模,将列得的方程化简整理,判断出方程的元数和次数。【设计意图】课程标准(2011版)提出:“教学中注重结合具体的学习内容,设计有效的数学探究活动,

  使学生经历数学的发生发展过程,是学生积累数学活动经验的重要途径。”教材所列举的两个实例及课后的习题,不能完整地体现二次方程产生的背景。为了让学生更好地明晰二次项产生的根源,我在过程设计中增添了这个由两个不同的一次式相乘产生二次方程的问题情境,以加深对一元二次方程概念的理解。让学生回答方程的元与次,一是让他们体会统一成一般形式的必要性,为概念的形成做铺垫,分解教学的难点;二是让他们明确教学的主线,从被动接受走向主动学习.

  问题3.这些方程是什么方程?师生活动:学生观察(1)(2)(3)方程,思考它们的共性,尝试给出一元二次方程的定义,并且概括出一元二次方程的一般形式.老师补充、强调.(1)一元二次方程的概念:如果一个方程通过整理可以使右边为0,而左边是只含有一个未知数的二次多项式,这样的方程叫做一元二次方程.(2)一元二次方程的一般形式是ax2+bx+c=0(a≠0).其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.【设计意图】新课标指出:“教师在教学过程中,应该设计适当的学习活动引导学生通过观察、尝试、归纳、类比等活动发现一些规律,猜测某些结论”。通过对三个方程结构的观察,寻找它们的共性,抽象它们的本质,类比一元一次方程的定义,尝试定义一元二次方程。概括一般形式是从另一个角度对一元二次方程理解,是对数学符号语言的应用能力的提升.3.辨析应用,加深理解问题4.请你说出一个一元二次方程,和一个不是一元二次方程的方程.师生活动:根据学情,随机选择学生回答,调动学生广泛地参与.追问学生所举的反例为什么不是一元二次方程?是什么方程?【设计意图】学生自己举例,应用概念,从正反两个方向强化对概念的理解,在追问的过程中,引导学生比较新旧知识的联系和区别,建立新的认知结构,形成概念域(“数学知识的教学,注重知识的结构和体系,处理好局部知识与整体知识的关系,引导学生感受数学的整体性。”)。体系如下:

  一元一次方程

  一次方程二元一次方程(组)其它

  整式方程

  方程

  分式方程

  二次方程

  一元二次方程其它

  其它

  其它

  开发学生认知资源,激发学生从不同角度、以不同形式去深入理解同一概念,让不同的学生在此过程中获得不同的收获,实现分层教学、分层指导的目的.

  问题5.请判断下列方程哪些是一元二次方程?例1.下列方程哪些是一元二次方程?说明理由。

  ①x2=9④x2-7=x2+2x;

  ②3x2-3=y2+2;⑤(x+1)2=3;

  ③5x;x

  ⑥x2+1=0;.

  答案①⑤⑥

  师生活动:学生独立思考,抢答。方程③、④、⑥(优生)可能会产生争议,③帮助学生明确一元二次

  方程是整式方程,④体会化为一般形式的必要性,对a≠0条件加深认识,⑥判断的依据是概念的三个要素。

  【设计意图】“学生获得知识,必须建立在自己思考的基础上”。补充学生所举正反例的缺漏,追问:有

  二次项的一元方程就是一元二次方程吗?帮助学生进一步巩固概念,深化对一元、二次的认识。

  问题6.指出下列方程的二次项、一次项和常数项及它们的系数.

  例2(教材例题改编).将下列方程化为一般形式,判断是否是一元二次方程?若是,指出它们的二次项、

  一次项和常数项及它们的系数:

  ①3x(1-x)+10=2(x+2);

  ②5x(x+1)+7=5x2-4.

  师生活动:.各小组的3号(①题)、4号(②题)上板尝试解题,完后讲解思路,学生质疑。教师适时

  引导,强调注意事项(比如系数的符号问题)。

  【设计意图】将问题充分暴露,培养学生的口头表达能力,对症下药。引导学生归纳其中用到的知识、

  解决问题的思路和方法、解题的基本步骤和格式规范,形成正确的解题策略。

  4.学以致用,巩固提高

  教科书第28页:练习

  师生活动:独立完成,组内自纠、帮扶。

  【设计意图】基础性、巩固性练习,检查本课内容的掌握情况.

  5.引导反思,归纳总结

  这节课在知识方面你学习了哪些内容?

  在方法方面你学会了什么?

  你有什么疑惑与感悟?

  想进一步探究的问题是什么?

  【设计意图】不同学生有不同的体会,要尊重学生的个体差异,激发学生主动参与,为每个学生都创造

  参加数学活动的机会,积累数学学习经验。

  6.目标检测设计

  【设计意图】对学有困难的学生,适当放低评价起点,允许再次评价,使他们看到自己的进步,树立学好

  数学的信心。

  1.下列方程哪些是关于x的一元二次方程

  (1)kx2-x=1;

  (2)x=x2;

  (3)1x;x1

  (4)(x+1)2-x2=0.

  【设计意图】考查对一元二次方程概念的理解.

  2.关于x的方程ax2-3x-2=0是一元二次方程,则().

  A.a>0B.a≠0C.a=1D.a≥0

  【设计意图】考查a≠0的条件.3.将关于x的一元二次方程(x-1)(x+3)=2(x+1)2化为一般形式,并指出二次项系数、一次项系数和常

  数项。

  【设计意图】考查化简方程的能力,及对一元二次方程一般式、所及概念的掌握情况.

  7.布置作业:

  必做题:教科书习题P28/A/1/(1)(2)(3)(4)选做题:关于x的方程2ax2-2bx+a=4x2-2x,在什么条件下此方程为一元二次方程?在什么条件下此方

  程为一元一次方程?

  【设计意图】分层布置作业,尊重学生的个体差异,激发学生学习积极性;开拓学生思维,体现数学的

  严谨性(分类讨论)。

  八、板书设计

  2.1一元二次方程

  方程

  共性

  情境(1):x2-2500=0情境(2):25x2+50x-11=0情境(3):x2-x=56

  一个未知数未知数的最高次数是2整式方程

  定义:如果一个方程通过整理可以使右边为0,而左边是只含有一个求知数的二次多项式,那么这样的方程叫作一元二次方程。

  一般形式:ax2+bx+c=0(a,b,c为常数,a≠0)

  二一常

  为

  次次数

  什

  项项项

  么

  系系

  ?

  数数

  教学设计说明《一元二次方程》是湘教版九年级数学上册第二章第一节内容,是起始课、概念课。教材按学生熟悉的课程基本模式“问题情境---建立模型---解释、应用与拓展”进行编排,流线型,顺理成章。基于数学课程标准(2011)“学生是数学学习的主体,在积极参与学习活动的过程中不断得到发展;教师应成为学生学习活动的组织者、引导者、合作者,为学生的发展提供良好的环境和条件。”;“教学中注重结合具体的学习内容,设计有效的数学探究活动,使学生经历数学的发生发展过程,是学生积累数学活动经验的重要途径。”;“教师在教学过程中,应该设计适当的学习活动引导学生通过观察、尝试、归纳、类比等活动发现一些规律,猜测某些结论”。;“数学知识的教学,注重知识的结构和体系,处理好局部知识与整体知识的关系,引导学生感受数学的整体性。”;“学生获得知识,必须建立在自己思考的基础上”。等理念,本课教学我采用讨论+启发的概念形成教学模式,流程为:具体例子——观察共性——抽象本质——形成定义——强化概念——概念应用——形成概念域(系),以问题为导向,任务为驱动,将目标问题化(数学价值取向)——问题任务化(教什么)——任务“微课”化(怎么教)——知识结构化(整理升华)——评价层次化(体验成功的快乐),达成学习目标。教学设计与实施,力求做到面向全体,激励为主,尊重学生的个体差异,创设人人都能积极参与、全程参与的教学情节和环境氛围,体验数学知识的发生、发展过程和数学思想,学以致用。

篇三:湘教版九年级上册数学教材分析

  第1章反比例函数1.1反比例函数

  教学目标

  【知识与技能】理解反比例函数的概念,根据实际问题能列出反比例函数关系式.【过程与方法】经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.【情感态度】培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.【教学重点】理解反比例函数的概念,能根据已知条件写出函数解析式.【教学难点】能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.

  教学过程

  一、情景导入,初步认知1.复习小学已学过的反比例关系,例如:(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?【教学说明】对相关知识的复习,为本节课的学习打下基础.二、思考探究,获取新知探究1:反比例函数的概念(1)一群选手在进行全程为3000米的赛马比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.(2)利用(1)的关系式完成下表:

  (3)随着时间t的变化,平均速度v发生了怎样的变化?

  1

  (4)平均速度v是所用时间t的函数吗?为什么?

  (5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?

  【归纳结论】一般地,如果两个变量x,y之间可以表示成y=k(k为常数且k≠0)的形x

  式,那么称y是x的反比例函数.其中x是自变量,常数k称为反比例函数的比例系数.

  【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的

  语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:

  反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t,其中自

  变量t可以取哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实

  际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t代表的是时间,

  且时间不能为负数,所有t的取值范围为t>0.

  【教学说明】教师组织学生讨论,提问学生,师生互动.

  三、运用新知,深化理解

  1.见教材P3例题.

  2.下列函数关系中,哪些是反比例函数?(1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的

  函数关系;

  (2)压强p一定时,压力F与受力面积S的关系;

  (3)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系.

  (4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关

  系式.

  分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=k(kx

  是常数,k≠0).所以此题必须先写出函数解析式,后解答.

  解:

  (1)a=12/h,是反比例函数;

  (2)F=pS,是正比例函数;

  (3)F=W/s,是反比例函数;

  (4)y=m/x,是反比例函数.

  3.当

  m

  为何值时,函数

  y=

  4x2m-2

  是反比例函数,并求出其函数解析式.分析:由反比例

  函数的定义易求出m的值.解:由反比例函数的定义可知:2m-2=1,m=3/2.所以反比例

  2

  函数的解析式为y=4.x

  4.当质量一定时,二氧化碳的体积V与密度ρ成反比例.且V=5m3时,ρ=1.98kg/m3

  (1)求p与V的函数关系式,并指出自变量的取值范围.

  (2)求V=9m3时,二氧化碳的密度.

  解:略

  5.已知y=y1+y2,y1与x成正比例,y2与x2成反比例,且x=2与x=3时,y的值都等于19.求y与x间的函数关系式.

  分析:y1与x成正比例,则y1=k1x,y2与x2成反比例,则y2=k2x2,又由y=y1+y2,

  可知,y=k1x+k2x2,只要求出k1和k2即可求出y与x间的函数关系式.

  解:因为

  y1

  与

  x

  成正比例,所以

  y1=k1x;因为

  y2

  与

  x2

  成反比例,所以

  y2=

  k2x2

  ,而y=

  y1+y2,所以

  y=k1x+

  k2x2

  ,当x=2与x=3时,y的值都等于19.

  【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.

  课后作业

  布置作业:教材“习题1.1”中第1、3、5题.

  教学反思

  学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.

  3

  1.2反比例函数的图象与性质第1课时反比例函数的图象与性质(1)

  教学目标

  【知识与技能】1.会用描点法画反比例函数图象;2.理解反比例函数的性质.【过程与方法】观察、比较、合作、交流、探索.【情感态度】通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质.【教学重点】画反比例函数的图象,理解反比例函数的性质.【教学难点】理解反比例函数的性质,并能灵活应用.

  教学过程

  一、情景导入,初步认知你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢?【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质.二、思考探究,获取新知探究1:反比例函数图象的画法画出反比例函数y=6的图象.分析∶画出函数图象一般

  x分为列表、描点、连线三个步骤.

  (1)列表:取自变量x的哪些值?

  x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右均匀,对称地取值.

  (2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(-6,-1)、(-3,-2)、(-2,-3)等.

  (3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平

  4

  滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.

  思考:(1)观察上图,y轴右边的各点,当横坐标x逐渐增大时,纵坐标y如何变化?y轴左边的各点是否也有相同的规律?(2)这两条曲线会与x轴、y轴相交吗?为什么?探究2:反比例函数所在的象限画出

  函数y=3的图形,并思考下列问题:x

  (1)函数图形的两个分支分别位于哪些象限?(2)在每一象限内,函数值y随自变量x的变化是如何变化的?

  【归纳结论】一般地,当k>0时,反比例函数y=k的图象由分别在第一、三象限内的两x

  支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而减小.

  探究3:反比例函数y=-6的图象.可以引导学生采用多种方式进行自主探索活动:x

  (1)可以用画反比例函数y=-6的图象的方式与步骤进行自主探索其图象;x

  (2)可以通过探索函数y=6与y=-6之间的关系,画出y=-6的图象.

  x

  x

  x

  【归纳结论】一般地,当k<0时,反比例函数y=k的图象由分别在第二、四象限内的两x

  支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而增

  大.

  探究4:反比例函数的性质反比例函数y=-6与y=6的图象有什么共同特征?

  x

  x

  5

  【教学说明】引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及

  “两支”的特征.

  【归纳结论】反比例函数y=k(k≠0)的图象是由两个分支组成的曲线.当k>0时,图象x

  在一、三象限;当k<0时,图象在二、四象限.反比例函数y=k与y=-k(k≠0)的图象关于

  x

  x

  x轴或y轴对称.

  【教学说明】学生动手画反比函数图象,进一步掌握画函数图象的步骤.观察函数图象,

  掌握反比例函数的性质.

  三、运用新知,深化理解

  1.教材P9例1.

  2.如果函数y=2xk+1的图象是双曲线,那么k=

  .

  【答案】-2

  3.如果反比例函数y=k-3的图象位于第二、四象限内,那么满足条件的正整数k的值x

  是

  .

  【答案】1,2

  4.已知直线y=kx+b的图象经过第一、二、四象限,则函数y=kb的图象在第象限.x

  【答案】二、四

  5.反比例函数y=1的图象大致是图中的(

  ).

  x

  解析:因为k=1>0,所以双曲线的两支分别位于第一、三象限.

  【答案】C

  6.下列反比例函数图象一定在第一、三象限的是(

  )

  6

  【答案】C7.已知函数y(m-2)x3-m2为反比例函数.(1)求m的值;(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?(3)当-3≤x≤-1时,求此函数的最大值和最小值.

  2

  8.作出反比例函数y=12的图象,并根据图象解答下列问题:x

  (1)当x=4时,求y的值;(2)当y=-2时,求x的值;(3)当y>2时,求x的范围.解:列表:

  7

  由图知:(1)y=3;(2)x=-6;(3)0<x<69.作出反比例函数y=-4的图象,结合图象回答:

  x(1)当x=2时,y的值;

  (2)当1<x≤4时,y的取值范围;(3)当1≤y<4时,x的取值范围.解:列表:

  由图知:(1)y=-2;(2)-4<y≤-1;

  8

  (3)-4≤x<-1.【教学说明】为了让学生灵活的用反比例函数的性质解决问题,在研究每一题时,要紧扣性质进行分析,达到理解性质的目的.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.

  课后作业

  布置作业∶教材“习题1.2”中第1、2、4题.

  教学反思

  通过本节课的学习使学生理解了反比例函数的意义和性质,并掌握了用描点法画函数图象的方法.同时也为后面的学习奠定基础.从练习上来看,学生掌握的不够好,应多加练习.

  第2课时反比例函数的图象与性质(2)

  教学目标

  【知识与技能】1.会求反比例函数的解析式;2.巩固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性.【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】提高学生的观察、分析能力和对图形的感知水平.【教学重点】会求反比例函数的解析式.【教学难点】反比例函数图象和性质的运用.

  9

  教学过程

  一、情景导入,初步认知1.反比例函数有哪些性质?2.我们学会了根据函数解析式画函数图象,那么你能根据一些条件求反比例函数的解析式吗?【教学说明】复习上节课的内容,同时引入新课.二、思考探究,获取新知1.思考:已知反比例函数y=k的图象经过点P(2,4)

  x(1)求k的值,并写出该函数的表达式;(2)判断点A(-2,-4),B(3,5)是否在这个函数的图象上;(3)这个函数的图象位于哪些象限?在每个象限内,函数值y随自变量x的增大如何变化?分析:(1)题中已知图象经过点P(2,4),即表明把P点坐标代入解析式成立,这样能求出k,解析式也就确定了.(2)要判断A、B是否在这条函数图象上,就是把A、B的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在.(3)根据k的正负性,利用反比例函数的性质来判定函数图象所在的象限、y随x的值的变化情况.【归纳结论】这种求解析式的方法叫做待定系数法求解析式.2.下图是反比例函数y=k的图象,根据图象,回答下列问题:

  x

  (1)k的取值范围是k>0还是k<0?说明理由;(2)如果点A(-3,y1),B(-2,y2)是该函数图象上的两点,试比较y1,y2的大小.分析:

  (1)由图象可知,反比例函数y=kx的图象的两支曲线分别位于第一、三象限内,在每个象限内,函数值y随自变量x的增大而减小,因此,k>0.

  10

  (2)因为点A(-3,y1),B(-2,y2)是该函数图象上的两点且-3<0,-2<0.所以点A、B都位于第三象限,又因为-3<-2,由反比例函数的图像的性质可知:y1>y2.

  【教学说明】通过观察图象,使学生掌握利用函数图象比较函数值大小的方法.

  三、运用新知,深化理解

  1.若点A(7,y1),B(5,y2)在双曲线y=-3上,则y1、y2中较小的是

  .

  x

  【答案】y2

  2.已知点A(x1,y1),B(x2,y2)是反比例函数y=k(k>0)的图象上的两点,若x1<0<x

  x2,则有(

  ).

  A.y1<0<y2B.y2<0<y1

  C.y1<y2<0D.y2<y1<0

  【答案】A

  3.若A(a1,b1),B(a2,b2)是反比例函数图象上的两个点,且a1<a2,则b1与b2的大小关

  系是(

  )

  A.b1<b2B.b1=b2【答案】D

  C.b1>b2

  D.大小不确定

  4.函数y=-1的图象上有两点A(x1,y1),B(x2,y2),若0<x1<x2,则(

  )

  x

  A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定

  【答案】A

  5.已知点P(2,2)在反比例函数y=k(k≠0)的图象上,x

  (1)当x=-3时,求y的值;

  (2)当1<x<3时,求y的取值范围.

  11

  6.已知y=k(k≠0,k为常数)过三个点A(2,-8),B(4,b),C(a,2).x

  (1)求反比例函数的表达式;(2)求a与b的值.解:(1)将A(2,-8)代入反比例解析式得:k=-16,则反比例解析式为y=-16;

  x(2)将B(4,b)代入反比例解析式得:b=-4;将C(a,2)代入反比例解析式得:2=-16,

  a即a=-8.

  7.已知反比例函数的图象过点(1,-2).(1)求这个函数的解析式,并画出图象;(2)若点A(-5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?分析:(1)反比例函数的图象过点(1,-2),即当x=1时,y=-2.由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;(2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上.解:

  12

  (1)设:反比例函数的解析式为:y=k(k≠0).而反比例函数的图象过点(1,-2),即x

  当x=1时,y=-2.所以-2=k,k=-2.即反比例函数的解析式为:y=-2.

  1

  x

  (2)点A(-5,m)在反比例函数y=-2图象上,所以m=2=2,点A的坐标为(-5,

  x

  55

  2).点A关于x轴的对称点(-5,-2)不在这个图象上;点A关于y轴的对称点(5,2)不

  5

  5

  5

  在这个图象上;点A关于原点的对称点(5,-2)在这个图象上;5

  【教学说明】通过练习,巩固本节课数学内容.

  四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.

  课后作业

  布置作业:教材“习题1.2”中第7题.

  教学反思

  教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相

  应的典型例题的条件下,让学生自己去寻找答案,自己去发现规律.最后,教师清楚地向学

  生总结每一种函数解析式的适用范围,以及一般应告知的条件.在信息社会飞速发展的今天,

  教师要从以前的教师教、学生学的观念中解放出来,教会学生如何学,让学生自己去探究,

  自己去学习,去获取知识.在《中学数学课程标准》中明确规定:教师不仅是学生的引导者,也是学生的合作者.教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习,探讨,才能真正做到教学相长,也才能真正

  13

  让每一个学生都学有所获.

  第3课时反比例函数的图象与性质(3)

  教学目标

  【知识与技能】1.综合运用一次函数和反比例函数的知识解决有关问题;2.借助一次函数和反比例函数的图象解决某些简单的实际问题.【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】能灵活运用函数图象和性质解决一些较综合的问题,培养学生看图(象)、识图(象)能力、体会用“数、形”结合思想解答函数题.【教学重点】理解并掌握一次函数,反比例函数的图象和性质,并能利用它们解决一些综合问题.【教学难点】

  14

  学会从图象上分析、解决问题,理解反比例函数的性质.

  教学过程

  一、情景导入,初步认知

  1.正比例函数有哪些性质?

  2.一次函数有哪些性质?

  3.反比例函数有哪些性质?

  【教学说明】对所学的三种函数的性质教学复习,让学生对它们的性质有系统的了解.

  二、思考探究,获取新知

  1.已知一个正比例函数与一个反比例函数的图象交于P(-3,4),试求出它们的表达式,

  并在同一坐标系内画出这两个函数的图象.解:设正比例函数,反比例函数的表达式分别为

  y=k1x,y=k2,其中,k1,k2是常数,且均不为0.x

  由于这两个函数的图象交于P(-3,4),则P(-3,4)是这两个函数图象上的点,即点P

  的坐标分别满足这两个表达式.因此,4=k1×(-3),4=

  k2-3

  解得,k1=

  43

  k2=-12所以,正比例

  函数解析式为y=4x,反比例函数解析式为y=-12.函数图象如下图.

  3

  x

  【教学说明】通过图象,让学生掌握一次函数与反比例函数的综合应用.2.在反比例函

  数y=6的图象上取两点P(1,6),Q(6,1),过点P分别作x轴、y轴的平行线,与坐标x

  轴围成的矩形面积为S1=

  ;过点Q分别作x轴、y轴的平行线,与坐标轴围成的矩形

  面积为S2=

  ;S1与S2有什么关系?为什么?

  【归纳结论】反比例函数y=k(k≠0)中比例系数k的几何意义:过双曲线y=k(k≠

  x

  x

  0)上任意一点引x轴、y轴的平行线,与坐标轴围成的矩形面积为k的绝对值.

  15

  【教学说明】引导学生根据一定的分类标准研究反比例函数的性质,同时鼓励学生用自

  己的语言进行表述,从而提高学生的表达能力与数学语言的组织能力.

  三、运用新知,深化理解

  1.已知如图,A是反比例函数y=kx的图象上的一点,AB丄x轴于点B,且△ABO的面积

  是3,则k的值是(

  )

  A.3B.-3C.6D.-6

  分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角

  三角形面积S是个定值,即S=1|k|.2

  解:根据题意可知:S△AOB=1|k|=3,又反比例函数的图象位于第一象限,k>0,则2

  k=6.

  【答案】C

  2.反比例函数y=6与y=2在第一象限的图象如图所示,作一条平行于x轴的直线分别

  x

  x

  交双曲线于A、B两点,连接OA、OB,则△AOB的面积为(

  )

  A.12

  B.2C.3D.1

  分析:分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y轴,点C为垂足,再根据反比例函数系数k的几何意义分别求出四边形OEAC、△AOE、△BOC的面积,进而可得出结论.

  16

  解:分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y轴,点C为垂足,∵由反比例函数系数k的几何意义可知,S四边形OEAC=6,S△AOE=3,S△BOC=1,∴S△AOB=S四边形OEAC-S△AOE-S△BOC=6-3-1=2.

  【答案】B3.已知直线y=x+b经过点A(3,0),并与双曲线y=k的交点为B(-2,m)和C,求k、b

  x的值.

  解:点A(3,0)在直线y=x+b上,所以0=3+b,b=-3.一次函数的解析式为:y=x-3.又因为点B(-2,m)也在直线y=x-3上,所以m=-2-3=-5,即B(-2,-5).而点B(-2,-5)又在反比例函数y=k上,所以k=-2×(-5)=10.

  x4.已知反比例函数y=k1的图象与一次函数y=k2x-1的图象交于A(2,1).

  x(1)分别求出这两个函数的解析式;(2)试判断A点关于坐标原点的对称点与两个函数图象的关系.分析:(1)因为点A在反比例函数和一次函数的图象上,把A点的坐标代入这两个解析式即可求出k1、k2的值.(2)把点A关于坐标原点的对称点A′坐标代入一次函数和反比例函数解析式中,可知A′是否在这两个函数图象上.解:(1)因为点A(2,1)在反比例函数和一次函数的图象上,所以k1=2×1=2.1=2k2-1,k2=1.所以反比例函数的解析式为:y=2;一次函数解析式为:y=x-1.

  x(2)点A(2,1)关于坐标原点的对称点是A′(-2,-1).把A′点的横坐标代入反比例函

  17

  数解析式得,y=2=-1,所以点A在反比例函数图象上.把A′点的横坐标代入一次函数解2

  析式得,y=-2-1=-3,所以点A′不在一次函数图象上.5.已知一次函数y=kx+b的图象经过点A(0,1)和点B(a,-3a),a<0,且点B在反比例

  函数的y=-3的图象上.x

  (1)求a的值.(2)求一次函数的解析式,并画出它的图象.(3)利用画出的图象,求当这个一次函数y的值在-1≤y≤3范围内时,相应的x的取值范围.(4)如果P(m,y1)、Q(m+1,y2)是这个一次函数图象上的两点,试比较y1与y2的大小.分析:(1)由于点A、点B在一次函数图象上,点B在反比例函数图象上,把这些点的坐标代入相应的函数解析式中,可求出k、b和a的值.(2)由(1)求出的k、b、a的值,求出函数的解析式,通过列表、描点、连线画出函数图象.(3)和(4)都是利用函数的图象进行解题.

  一次函数和反比例函数的图象为:

  18

  (3)从图象上可知,当一次函数y的值在-1≤y≤3范围内时,相应的x的值为:-1≤x≤1.

  (4)从图象可知,y随x的增大而减小,又m+1>m,所以y1>y2.或解:当x1=m时,y1=-2m+1;当x2=m+1时,y2=-2×(m+1)+1=-2m-1所以y1-y2=(-2m+1)-(-2m-1)=2>0,即y1>y2.6.如图,一次函数y=kx+b的图象与反比例函数y=m的图象交于A、B两点.

  x(1)利用图象中的条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数值的x的取值范围.

  分析:(1)把A、B两点坐标代入两解析式,即可求得一次函数和反比例函数解析式.(2)因为图象上每一点的纵坐标与函数值是相对应的,一次函数值大于反比例函数值,反映在图象上,自变量取相同的值时,一次函数图象上点的纵坐标大于反比例函数图象上点的纵坐标.

  19

  【教学说明】检测题采取多种形式呈现,增加了灵活性,以基础题为主,也有少量综合问题,可使不同层次水平的学生均有机会获得成功的体验.

  四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.

  课后作业

  布置作业:教材“习题1.2”中第6题.通过本节课的学习,发现了一些问题,因此必须强调:

  教学反思

  1.综合运用一次函数和反比例函数求解两种函数解析式,往往用待定系数法.2.观察图象,把图象中提供、展现的信息转化为与两函数有关的知识来解题.

  1.3反比例函数的应用

  教学目标

  【知识与技能】经历通过实验获得数据,然后根据数据建立反比例函数模型的一般过程,体会建模思想.【过程与方法】

  20

  观察、比较、合作、交流、探索.【情感态度】体验数形结合的思想.【教学重点】建立反比例函数的模型,进而解决实际问题.【教学难点】经历探索的过程,培养学生学习数学的主动性和解决问题的能力.

  教学过程

  一、情景导入,初步认知复习回顾1.什么是反比例函数?2.反比例函数的图象是什么?3.反比例函数图象有哪些性质?4.反比例函数的图象对称性如何?【教学说明】通过提出问题,引发学生思考,培养学生解决问题的能力.二、思考探究,获取新知1.某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?(1)根据压力F(N)、压强p(Pa)与受力面积S(m2)之间的关系式p=F,请你判断:当F

  S一定时,p是S的反比例函数吗?

  (2)如人对地面的压力F=450N,完成下表:

  (3)当F=450N时,试画出该函数的图象,并结合图象分析当受力面积S增大时,地面所受压强p是如何变化的,据此,请说出它们铺垫木板通过湿地的道理.解:

  (1)对于p=F,当F一定时,根据反比例函数的定义可知,p是S的反比例函数.S

  (2)因为F=450N,所以当S=0.005m2时,由p=F得:p=450/0.005=90000(Pa)类似的,S

  21

  当S=0.01m2时,p=45000Pa;当S=0.02m2时,p=22500Pa;当S=0.04m2时,p=11250Pa(3)当F=450N时,该反比例函数的表达式为p=450/S,它的图象如下图所示,由图象的性

  质可知,当受力面积S增大时,地面所受压强p会越来越小,因此,该科技小组通过铺垫木板的方法来增大受力面积.以减小地面所受压强,从而可以顺利地通过湿地.

  2.你能根据玻意耳定律(在温度不变的情况下,气体的压强p与它的体积V的乘积是一

  个常数K(K>0),即pV=K)来解释:为什么使劲踩气球时,气体会爆炸?

  【教学说明】逐步提高学生从函数图象中获取信息的能力,提高感知水平;此外,在解

  决实际问题时,要引导学生体会知识之间的联系及知识的综合运用.

  三、运用新知,深化理解

  1.教材P15例题.2.一个水池装水12m3,如果从水管中每小时流出xm3的水,经过yh可以把水放完,那么

  y与x的函数关系式是

  ,自变量x的取值范围是

  .

  【答案】y=12;x>0x

  3.若梯形的下底长为x,上底长为下底长的1,高为y,面积为60,则y与x的函数关3

  系是

  (不考虑x的取值范围).

  【答案】y=90x

  4.某一数学课外兴趣小组的同学每人制作一个面积为200cm2的矩形学具进行展示.设矩

  形的宽为xcm,长为ycm,那么这些同学所制作的矩形的长y(cm)与宽x(cm)之间的函数关系

  的图象大致是(

  )

  22

  【答案】A

  5.下列各问题中两个变量之间的关系,不是反比例函数的是(

  )

  A.小明完成百米赛跑时,所用时间t(s)与他的平均速度v(m/s)之间的关系

  B.长方形的面积为24,它的长y与宽x之间的关系

  C.压力为600N时,压强p(Pa)与受力面积S(m2)之间的关系

  D.一个容积为25L的容器中,所盛水的质量m(kg)与所盛水的体积V(L)之间的关系

  【答案】D

  6.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后

  缸内气体的体积和气体对汽缸壁所产生的压强,如下表:

  则可以反映y与x之间的关系的式子是(

  ).

  A.y=3000x【答案】D

  B.y=6000x

  C.y=3000x

  D.y=6000x

  7.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩

  形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y与x的函数图象是(

  )

  23

  【答案】A8.一个长方体的体积是100cm3,它的长是y(cm),宽是5cm,高是x(cm).(1)写出长y(cm)关于高x(cm)的函数关系式,以及自变量x的取值范围;(2)画出(1)中函数的图象;(3)当高是3cm时,求长.解:(1)y=20(x>0);

  x(2)图象略;(3)长为20cm.

  3【教学说明】用函数观点来处理实际问题的应用,加深对函数的认识.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.

  课后作业

  布置作业:教材“习题1.3”中第1、2、4题.

  教学反思

  本节课通过学生自主探索,合作交流,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极的情感态度,促进良好的数学观的形成.在教学手段上,本节课大量使用多媒体辅助教学,既能体现知识的背景材料,又能一下子引起学生的注意力,有效地节省了时间,增大了课堂容量.生动形象的动画演示,动感强,直观性好,既加深了学生的理解,又培养了学生的抽象思维能力,同时也向学生渗透了归纳类比,数形结合的数学思想方法.

  24

  第2章一元二次方程

  2.1一元二次方程

  教学目标【知识与技能】探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知

  识.【过程与方法】在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活

  的联系.

  25

  【情感态度】通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.【教学重点】一元二次方程的概念.【教学难点】如何把实际问题转化为数学方程.教学过程一、情景导入,初步认知问题1:已知一矩形的长为200cm,宽150cm.在它的中间挖一个圆,使剩余部分的面积为原矩形面积的34,求挖去的圆的半径xcm应满足的方程.(π取3)问题2:据某市交通部门统计,前年该市汽车拥有量为75万辆,两年后增加到108万辆,求该市两年来汽车拥有量的年平均增长率x应满足的方程.你能列出相应的方程吗?【教学说明】为学生创设了一个回忆、思考的情境,又是本课一种很自然的引入,为本课的探究活动做好铺垫.二、思考探究,获取新知1.对于问题1:找等量关系:矩形的面积—圆的面积=矩形的面积×3/4列出方程:200×150-3x2=200×150×3/4①对于问题2:等量关系:两年后的汽车拥有量=前年的汽车拥有量×(1+年平均增长率)2列出方程:75(1+x)2=1082②2.能把①,②化成右边为0,而左边是只含有一个未知数的二次多项式的形式吗?让学生展开讨论,并引导学生把①,②化成下列形式:①化简,整理得x2-2500=0③②化简,整理得25x2+50x-11=0④3.讨论:方程③、④中的未知数的个数和次数各是多少?【教学说明】分组合作、小组讨论,经过讨论后交流小组的结论,可以发现上述方程都不是所学过的方程,特点是两边都是整式,且整式的最高次数是2次.【归纳结论】如果一个方程通过移项可以使右边为0,而左边是只含有一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是:ax2+bx+c=0,(a,b,c是常数且a≠0),其中a,b,c分别叫作二次项系数、一次项系数、常数项.

  26

  4.让学生指出方程③,④中的二次项系数、一次项系数和常数项.【教学说明】让学生充分感受所列方程的特点,再通过类比的方法得到定义,从而达到真正理解定义的目的.三、运用新知,深化理解1.见教材P27例题.2.下列方程是一元二次方程的有.

  【答案】(5)

  3.已知(m+3)x2-3mx-1=0是一元二方程,则m的取值范围是_____.

  分析:一元二次方程二次项的系数不等于零.故m≠-3.

  【答案】m≠-3

  4.把方程(1-3x)(x+3)=2x2+1化为一元二次方程的一般形式,并写出二次项,二次项系

  数,一次项,一次项系数及常数项.

  解:原方程化为一般形式是:5x2+8x-2=0(若写成-5x2-8x+2=0,则不符合人们的习惯),

  其中二次项是5x2,二次项系数是5,一次项是8x,一次项系数是8,常数项是-2(因为一元二次

  方程的一般形式是三个单项式的和,所以不能漏写单项式系数的负号).

  5.关于x方程mx2-3x=x2-mx+2是一元二次方程,m应满足什么条件?

  分析:先把这个方程变为一般形式,只要二次项的系数不为0即可.

  解:由mx2-3x=x2-mx+2得到(m-1)x2+(m-3)x-2=0,所以m-1≠0,

  即m≠1.所以关于x的方程mx2-3x=x2-mx+2是一元二次方程,m应满足m≠1.

  6.一元二次方程(x+1)2-x=3(x2-2)化成一般形式是.

  分析:一元二次方程一般形式是ax2+bx+c=0(a≠0),对照一般形式可先去括号,再移

  项,合并同类项,得2x2-x-7=0.

  【答案】2x2-x-7=0

  7.把方程-5x2+6x+3=0的二次项系数化为1,方程可变为()

  A.x2+6/5x+3/5=0

  B.x2-6x-3=0

  C.x2-6/5x-3/5=0D.x2-6/5x+3/5=0

  【答案】C

  27

  注意方程两边除以-5,另两项的符号同时发生变化.8.已知方程(m+2)x2+(m+1)x-m=0,当m满足______时,它是一元一次方程;当m满足______时,它是二元一次方程.分析:当m+2=0,m=-2时,方程是一元一次方程;当m+2≠0,m≠-2时,方程是二元一次方程.【答案】m=-2m≠-29.某型号的手机连续两次降价,每个售价由原来的1185元降到了580元,设平均每次降价的百分率为x,则列出方程为____________【答案】1185(1-x)2=58010.当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元二次方程?这时方程的二次项系数、一次项系数分别是什么?当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元一次方程?解:当a≠1时是一元二次方程,这时方程的二次项系数是a-1,一次项系数是-b;当a=1,b≠0时是一元一次方程.【教学说明】这组练习目的在于巩固学生对一元二次方程定义中几个特征的理解.进一步巩固学生对一元二次方程的基本概念.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题2.1”中第1、2、6题.教学反思本节课是一元二次方程的第一课时,通过对本节课的学习,学生将掌握一元二次方程的定义、一般形式、及有关概念,并学会利用方程解决实际问题.在教学过程中,注重重难点的体现.本节课内容对于学生整个中学阶段的数学学习有着重大的意义,能否学好关系到日后学习的成败,因此必须要让学生吃透内容并且要真正能消化.

  28

  2.2一元二次方程的解法

  2.2.1配方法

  教学目标

  【知识与技能】1.知道解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程.2.学会用直接开平方法解形如(ax+b)2-k=0(k≥0)的方程.3.理解“配方”是一种常用的数学方法,在用配方法将一元二次方程变形的过程中,让学生进一步体会化归的思想方法.【过程与方法】通过探索配方法的过程,让学生体会转化的数学思想方法.【情感态度】学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增强学生学习数学的兴趣.【教学重点】运用配方法解一元二次方程.【教学难点】把一元二次方程转化为形如(x+n)2=d(d≥0)的过程.教学过程一、情景导入,初步认知1.根据完全平方公式填空:

  29

  (1)x2+6x+9=()2(2)x2-8x+16=()2(3)x2+10x+()2=()2(4)x2-3x+()2=()22.前面我们已经学了一元一次方程和二元一次方程组的解法,解二元一次方程组的基本思路是什么?(消元、化二元一次方程组为一元一次方程).由解二元一次方程组的基本思路,你能想出解一元二次方程的基本思路吗?3.你会解方程x2+6x-16=0吗?你会将它变成(x+m)2=n(n为非负数)的形式吗?试试看.如果是方程2x2+1=3x呢?【教学说明】学会利用完全平方知识填空,初步配方为后面学习打下基础.二、思考探究,获取新知1.解方程:x2-2500=0.问:怎样将这个方程“降次”为一元一次方程?把方程写成x2=2500这表明x是2500的平方根,根据平方根的意义,得x=2500或x=-2500因此,原方程的解为x1=50,x2=-50【归纳结论】一元二次方程的解也是一元二次方程的根.2.解方程(2x+1)2=2解:根据平方根的有意义,得2x+1=2或2x+1=-2因此,原方程的根为

  x1=2-1,x2=-2+1

  2

  2

  3.通过上面的两个例题,你知道什么时候用开平方的方法来解一元二次方程呢?

  【归纳结论】对于形如(x+n)2=d(d≥0)的方程,可直接用开平方法解.

  直接开平方法的步骤是:把方程变形成(x+n)2=d(d≥0),然后直接开平方得x+n=d

  和x+n=-d,分别解这两个一元一次方程,得到的解就是原一元二次方程的解.4.解方程x2+4x=12我们已知,如果把方程x2+4x=12写成(x+n)2=d的形式,那么就可以根据平方根的意义

  来求解.

  30

  那么,如何将左边写成(x+n)2的形式呢?我们学过完全平方式,你能否将左边x2+4x添上一项使它成为一个完全平方式.请相互交流.写出解题过程.【归纳结论】一般地,像上面这样,在方程x2+4x=12的左边加上一次项系数的一半的平方,在减去这个数,使得含未知数的项在一个完全平方式里,这种做法叫作配方.配方、整理后就可以直接根据平方根的意义来求解了.这种解一元二次方程的方法叫作配方法.5.如何用配方法解方程25x2+50x-11=0呢?如果二次项系数为1,那就好办了!那么怎样将二次项的系数化为1呢?同伴之间可以相互交流.试着写出解题过程.6.通过上面配方法解一元二次方程的过程,你能总结用配方法解一元二次方程的步骤吗?【归纳结论】用配方法解一元二次方程的步骤:(1)把方程化为一般形式ax2+bx+c=0;(2)把方程的常数项通过移项移到方程的右边;(3)若方程的二次项系数不为1时,方程两边同时除以二次项系数a;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.【教学说明】通过这一过程,学生发现能用直接开平方法求解的方程都可以转化成一般形式,一般形式的方程也能用配方法转化为可以直接开平方的形式,所以总结出解一元二次方程的基本思路是将一元二次方程转化为(x+n)2=d(d≥0)的形式.三、运用新知,深化理解1.见教材P33例3、P34例4.2.列方程(注:学生练习,教师巡视,适当辅导.)(1)x2-10x+24=0;(2)(2x-1)(x+3)=5;(3)3x2-6x+4=0.解:(1)移项,得x2-10x=-24配方,得x2-10x+25=-24+25,

  31

  由此可得(x-5)2=1,

  x-5=±1,∴x1=6,x2=4.(2)整理,得2x2+5x-8=0.移项,得2x2+5x=8二次项系数化为1得x2+5/2x=4,配方,得x2+5/2x+(5/4)2=4+(5/4)2(x+5/4)2=89/16,

  由此可得x+5/4=±89/4,

  x1=-589,x2=-5-89.

  4

  4

  (3)移项,得3x2-6x=-4

  二次项系数化为1,得x2-2x=-4/3,

  配方,得x2-2x+12=-4/3+12,

  (x-1)2=-1/3

  因为实数的平方不会是负数,所以x取任何实数时,(x-1)2都是非负数,上式都不成立,

  即原方程无实数根.3.解方程x2-8x+1=0

  分析:显然这个方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方

  式.解:x2-8x+1=0

  移项得:x2-8x=-1配方得:x2-8x+16=-1+16即(x-4)2=15

  两边开平方得:

  x-4=±15

  ∴x1=4+15,x2=4-15.4.用配方法将下列各式化为a(x+h)2+k的形式.

  32

  (1)-3x2-6x+1;(2)2/3y2+1/3y+2;(3)0.4x2-0.8x-1.解:(1)-3x2-6x+1=-3(x2+2x-1/3)=-3(x2+2x+12-12-1/3)=-3[(x+1)2-4/3]=-3(x+1)2+4(2)2/3y2+1/3y-2=2/3(y2+1/2y-3)=2/3[y2+1/2y+(1/4)2-(1/4)2-3]=2/3[(y+1/4)2-49/16]=2/3(y+1/4)2-49/24.(3)0.4x2-0.8x-1=0.4(x2-2x-2.5)=0.4[(x2-2x+12)-12-2.5]=0.4(x-1)2-1.4【教学说明】通过练习,使学生能灵活运用“配方法”,并强化学生对一元二次方程解的认识.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题2.2”中第1、2、3题.教学反思在教学过程中,坚持由简单到复杂,由特殊到一般的原则,采用了观察对比,合作探究等不同的学习方式,充分发挥学生的主体作用,让学生主动探究发现结论,教师做学生学习的引导者,合作者,促进者,要适时鼓励学生,实现师生互动.同时,我认识到教师不仅仅要教给学生知识,更要在教学中渗透数学中的思想方法,培养学生良好的数学素养和学习能力,让学生学会学习.

  2.2.2公式法

  教学目标

  33

  【知识与技能】1.经历推导求根公式的过程,加强推理技能的训练.2.会用公式法解简单系数的一元二次方程.【过程与方法】通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思想.【情感态度】让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感,感受公式的对称美、简洁美,产生热爱数学的情感.【教学重点】求根公式的推导和公式法的应用.【教学难点】理解求根公式的推导过程.教学过程一、情景导入,初步认知1.用配方法解方程:(1)x2+3x+2=0;(2)2x2-3x+5=0.2.由用配方法解一元二次方程的基本步骤知:对于每个具体的一元二次方程,都使用了相同的一些计算步骤,这启发我们思考,能不能对一般形式的一元二次方程ax2+bx+c=0(a≠0)使用这些步骤,然后求出解x的公式?【教学说明】这样做了以后,我们可以运用这个公式来求每一个具体的一元二次方程的解,取得一通百通的效果.二、思考探究,获取新知1.用配方法解方程:ax2+bx+c=0(a≠0)分析:前面具体数字已做了很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax2+bx=-c

  34

  【归纳结论】由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:

  (1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a、b、c代入式子

  就可求出方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.【强调】用公式法解一元二次方程时,必须注意两点:(1)将a、b、c的值代入公式时,一定要注意符号不能出错.(2)式子b2-4ac≥0是公式的一部分.【教学说明】让学生思考对于一般形式的一元二次方程ax2+bx+c=0(a≠0)能否用配方法求出它的解?通过解方程发现归纳一元二次方程的求根公式.2.展示课本P36例5(1),(2),按课本方式引导学生用公式法解一元二次方程,并提醒学生在确定a,b,c的值时,先要将一元二次方程式化为一般形式,注意a,b,c的符号.3.引导学生完成P37例6.

  35

  4.你能总结出用公式法解一元二次方程的一般步骤吗?【归纳结论】首先要把原方程化为一般形式,从而正确地确定a,b,c的值;其次要计算b2-4ac的值,当b2-4ac≥0时,再用求根公式求解.三、运用新知,深化理解1.用公式法解下列方程.2x2+3=7x分析:用公式法解一元二次方程,需先确定a、b、c的值、再算出b2-4ac的值、最后代入求根公式求解.解:2x2-7x+3=0a=2,b=-7,c=3∵b2-4ac=(-7)2-4×2×3=25>0

  2.某数学兴趣小组对关于x的方程(m+1)xm2+1+(m-2)x-1=0提出了下列问题.(1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程.(2)若使方程为一元一次方程m是否存在?若存在,请求出.你能解决这个问题吗?分析:(1)要使它为一元二次方程,必须满足m2+1=2,同时还要满足(m+1)≠0.(2)要使它为一元一次方程,必须满足∶

  解:(1)存在.根据题意,得:m2+1=2m2=1m=±1当m=1时,m+1=1+1=2≠0当m=-1时,m+1=-1+1=0(不合题意,舍去)

  36

  ∴当m=1时,方程为2x2-1-x=0a=2,b=-1,c=-1b2-4ac=(-1)2-4×2×(-1)=1+8=9

  因此,该方程是一元二次方程时,m=1,两根x1=1,x2=-12.(2)存在.根据题意,得:①m2+1=1,m2=0,m=0因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0所以m=0满足题意.②当m2+1=0,m不存在.③当m+1=0,即m=-1时,m-2=-3≠0所以m=-1也满足题意.当m=0时,一元一次方程是x-2x-1=0,解得:x=-1当m=-1时,一元一次方程是-3x-1=0解得x=-1/3因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-1时,其一元一次方程的根为x=-1/3.【教学说明】主体探究、探究利用公式法解一元二次方程的一般方法,进一步理解求根公式.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题2.2”中第4题.教学反思通过复习配方法使学生会对一元二次方程的定义及解法有一个熟悉的印象.然后让学生用配方法推导一般形式ax2+bx+c=0(a≠0)的解,并掌握利用根的判别式判断一元二次方程根的情况.使学生的推理能力得到加强.

  2.2.3因式分解法

  37

  教学目标【知识与技能】能灵活运用直接开平方法、配方法、公式法及因式分解法解一元二次方程.能够根据一

  元二次方程的结构特点,灵活择其简单的方法.【过程与方法】通过比较、分析、综合,培养学生分析问题解决问题的能力.【情感态度】通过知识之间的相互联系,培养学生用联系和发展的眼光分析问题,解决问题,树立转

  化的思想方法.【教学重点】用因式分解法一元二次方程.【教学难点】理解因式分解法解一元二次方程的基本思想.

  教学过程一、情景导入,初步认知复习:将下列各式分解因式(1)5x2-4x(2)x2-4x+4(3)4x(x-1)-2+2x(4)x2-4(5)(2x-1)2-x2【教学说明】通过复习相关知识,有利于学生熟练正确将多项式因式分解,从而有利降

  低本节的难度.二、思考探究,获取新知1.解方程x2-3x=0可用因式分解法求解方程左边提取公因式x,得x(x-3)=0由此得x=0或x-3=0即x1=0,x2=3与公式法相比,哪种更简单?【归纳结论】利用因式分解来解一元二次方程的方法叫做因式分解法.

  38

  2.用因式分解法解下列方程;(1)x(x-5)=3x;(2)2x(5x-1)=3(5x-1);(3)(35-2x)2-900=0.3.你能总结因式分解法解一元二次方程的一般步骤吗?【归纳结论】把方程化成一边为0,另一边是两个一次因式的乘积的形式,然后使每一个一次因式等于0,分别解两个一元一次方程,得到的两个解就是原一元二次方程的解.4.说一说:因式分解法适用于解什么形式的一元二次方程.【归纳结论】因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程.5.选择合适的方法解下列方程:(1)x2+3x=0;(2)5x2-4x-3=0;(3)x2+2x-3=0.按课本方式引导学生用因式分解法解一元二次方程.6.如何选择合适的方法解一元二次方程呢?【归纳结论】公式法适用于所有一元二次方程.因式分解法(有时需要先配方)适用于所有一元二次方程.配方法是为了推导出求根公式,以及先配方,然后用因式分解法.总之,解一元二次方程的基本思路都是:将一元二次方程转化成为一元一次方程,即降次,其本质是把方程ax2+bx+c=0(a≠0)的左边的二次多项式分解成两个一次多项式的乘积,即ax2+bx+c=a(x-x1)(x-x2),其中x1和x2是方程ax2+bx+c=0的两个根.【教学说明】在学生解决问题的基础上引导学生探索利用因式分解解方程的方法,感受因式分解的作用以及能够解方程的依据.三、运用新知,深化理解1.用因式分解法解下列方程:(1)5x2+3x=0;(2)7x(3-x)=4(x-3).分析:(1)左边=x(5x+3),右边=0;(2)先把右边化为0,7x(3-x)-4(x-3)=0,找出(3-x)与(x-3)的关系.解:(1)因式分解,得x(5x+3)=0,于是得x=0或5x+3=0,

  39

  x1=0,x2=-3/5;(2)原方程化为7x(3-x)-4(x-3)=0,因式分解,得(x-3)(-7x-4)=0,于是得x-3=0或-7x-4=0,x1=3,x2=-4/72.选择合适的方法解下列方程:(1)2x2-5x+2=0;(2)(1-x)(x+4)=(x-1)(1-2x).分析:(1)题宜用公式法;(2)题中找到(1-x)与(x-1)的关系用因式分解法;解:(1)a=2,b=-5,c=2,b2-4ac=(-5)2-4×2×2=9>0,

  x1=2,x2=1/2(2)原方程化为(1-x)(x+4)+(1-x)(1-2x)=0,因式分解,得(1-x)(5-x)=0,即(x-1)(x-5)=0,x-1=0或x-5=0,x1=1,x2=53.用因式分解法解下列方程:(1)10x2+3x=0;(2)7x(3-x)=6(x-3);(3)9(x-2)2=4(x+1)2.分析:(1)左边=x(10x+3),右边=0;(2)先把右边化为0,7x(3-x)-6(x-3)=0,找出(3-x)与(x-3)的关系;(3)应用平方差公式.解:(1)因式分解,得x(10x+3)=0,于是得x=0或10x+3=0,x1=0,x2=-3/10;(2)原方程化为7x(3-x)-6(x-3)=0,因式分解,得(x-3)(-7x-6)=0,于是得x-3=0或-7x-6=0,x1=3,x2=-6/7;

  40

  (3)原方程化为9(x-2)2-4(x+1)2=0,因式分解,得[3(x-2)+2(x+1)][3(x-2)-2(x+1)]=0,即(5x-4)(x-8)=0,于是得5x-4=0或x-8=0,x1=4/5,x2=8.4.已知(a2+b2)2-(a2+b2)-6=0,求a2+b2的值.分析:若把(a2+b2)看作一个整体,则已知条件可以看作是以(a2+b2)为未知数的一元二次方程.解:设a2+b2=x,则原方程化为x2-x-6=0.a=1,b=-1,c=-6,b2-4ac=12-4×(-6)×1=25>0,x=125,∴x1=3,x2=-2.

  2即a2+b2=3或a2+b2=-2,∵a2+b2≥0,∴a2+b2=-2不合题意应舍去,取a2+b2=3.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“练习题2.2”中第5、6、9、10题.教学反思这节课主要学习了用因式分解法解一元二次方程的概念及其解法,解法的基本思路是将一元二次方程转化为一元一次方程,而达到这一目的,我们主要利用了因式分解“降次”.在今天的学习中,要逐步深入、领会、掌握“转化”这一数学思想方法.

  41

  2.3一元二次方程根的判别式

  教学目标【知识与技能】能运用根的判别式,判别方程根的情况和进行有关的推理论证.【过程与方法】经历思考、探究过程,发展总结归纳能力,能有条理地、清晰地阐述自己的观点.【情感态度】积极参与数学活动,对其产生好奇心和求知欲.【教学重点】能运用根的判别式,判别方程根的情况和进行有关的推理论证.【教学难点】从具体题目来推出一元二次方程ax2+bx+c=0(a≠0)的b2-4ac的情况与根的情况的关系.

  教学过程一、情景导入,初步认知同学们,我们已经学会了怎么解一元二次方程,对吗?那么,现在老师这儿还有一手绝

  活,就是:我随便拿到一个一元二次方程的题目,我不用具体地去解它,就能很快知道它的根的大致情况,不信呀!同学们可以随便地出两个题考考我.

  【教学说明】这样设计,能马上激发学生的学习兴趣和求知欲,为后面发现结论创造一个最佳的心理状态.

  二、思考探究,获取新知1.问题:什么是求根公式?它有什么作用?2.观察求根公式x-bb2-4ac回答下列问题:

  2a(1)当b2-4ac>0时,一元二次方程ax2+bx+c=0(a≠0)有几个根?(2)当b2-4ac=0时,一元二次方程ax2+bx+c=0(a≠0)有几个根?(3)当b2-4ac<0时,一元二次方程ax2+bx+c=0(a≠0)有几个根?3.综上所知,一元二次方程ax2+bx+c=0(a≠0)的根的情况是由b2-4ac来判断的.【归纳结论】我们把b2-4ac叫做一元二次方程的根的判别式,通常用符号“Δ”表示.

  42

  即:Δ=b2-4ac⑴当Δ=b2-4ac>0时,一元二次方程ax2+bx+c=0(a≠0)有两个不相等实数根即

  x1

  -b

  b2-4ac2a

  ,x2

  -b-b2-4ac2a

  .

  ⑵当Δ=b2-4ac=0时,一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根.

  ⑶当Δ=b2-4ac<0时,一元二次方程ax2+bx+c=0(a≠0)没有实数根.

  4.不解方程判定下列方程的根的情况.

  (1)3x2+4x-3=0

  (2)4x2=12x-9

  (3)7y=5(y2+1)

  解:(1)因为Δ=b2-4ac=42-4×3×(-3)

  =52>0

  所以,原方程有两个不相等的实数根.

  (2)将原方程化为一般形式,得

  4x2-12x+9=0

  因为Δ=b2-4ac=(-12)2-4×4×9

  =0

  所以,原方程有两个相等的实数根.

  (3)将原方程化为一般形式,得

  5y2-7y+5=0

  因为Δ=b2-4ac=(-7)2-4×5×5

  =-51<0

  所以,原方程没有实数根.

  【教学说明】学生从具体到抽象的观察、分析与概括能力并使学生从感性认识上升到理

  性认识,真正体验自己发现结论的成功乐趣.

  三、运用新知,深化理解

  1.已知方程x2+px+q=0有两个相等的实根,则p与q的关系是.

  【答案】p2-4q=0

  2.若方程x2+px+q=0的两个根是-2和3,则p,q的值分别为.

  【答案】-1,-6

  3.判断下列方程是否有解:

  43

  (1)5x2-2=6x(2)3x2+2x+1=0解析:演算或口算出b2-4ac,从而判断是否有根解:(1)有(2)没有4.不解方程,判定方程根的情况.(1)16x2+8x=-3(2)9x2+6x+1=0(3)2x2-9x+8=0(4)x2-7x-18=0分析:不解方程,判定根的情况,只需用b2-4ac的值大于0、小于0、等于0的情况进行分析即可.解:(1)化为16x2+8x+3=0这里a=16,b=8,c=3,b2-4ac=64-4×16×3=-128<0所以,方程没有实数根.(2)a=9,b=6,c=1,b2-4ac=36-36=0,∴方程有两个相等的实数根.(3)a=2,b=-9,c=8b2-4ac=(-9)2-4×2×8=81-64=17>0∴方程有两个不相等的实根.(4)a=1,b=-7,c=-18b2-4ac=(-7)2-4×1×(-18)=121>0∴方程有两个不相等的实根.5.若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示).分析:要求ax+3>0的解集,就是求ax>-3的解集,那么就转化为要判定a的值是正、负或0.因为一元二次方程(a-2)x2-2ax+a+1=0没有实数根,即(-2a)2-4(a-2)(a+1)<0就可求出a的取值范围.解:∵关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数根.∴(-2a)2-4(a-2)(a+1)=4a2-4a2+4a+8<0∴a<-2∵ax+3>0即ax>-3,∴x<-3/a∴所求不等式的解集为x<-3/a6.已知关于x的一元二次方程x2+2x+m=0.

  44

  (1)当m=3时,判断方程的根的情况;(2)当m=-3时,求方程的根.分析:(1)判断一元二次方程根的情况,只要看根的判别式Δ=b2-4ac的值的符号即可判断:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.(2)把m的值代入方程,用因式分解法求解即可.解:(1)∵当m=3时,Δ=b2-4ac=22-4×3=-8<0,∴原方程无实数根.(2)当m=-3时,原方程变为x2+2x-3=0,∵(x-1)(x+3)=0,∴x-1=0,x+3=0.∴x1=1,x2=-3.7.已知一元二次方程x2+px+q+1=0的一根为2.(1)求q关于p的关系式;(2)求证:抛物线y=x2+px+q与x轴有两个交点.分析:(1)根据一元二次方程的解的定义,把x=2代入已知方程即可求得q关于p的关系式;(2)由关于x的方程x2+px+q=0的根的判别式的符号来证明抛物线y=x2+px+q与x轴有两个交点.解:(1)∵一元二次方程x2+px+q+1=0的一根为2,∴4+2p+q+1=0,即q=-2p-5;(2)证明:令x2+px+q=0.则Δ=p2-4q=p2-4(-2p-5)=(p+4)2+4>0,即Δ>0,所以,关于x的方程x2+px+q=0有两个不相等的实数根.即抛物线y=x2+px+q与x轴有两个交点.【教学说明】使学生能及时巩固本节课所学知识,培养学生自觉学习的习惯,同时对学有余力的学生留出自由的发展空间.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题2.3”中第1、2、3题.教学反思

  45

  本节课的教学坚持从学生实际出发,以学生为主体,注重对新理念的贯彻和教学方法的使用;在突破难点时,多种方法并用,注意培养自学能力;坚持当堂训练,例题、练习的设计针对性强,重点突出,对方法的总结言简意赅;学生能够积极、主动的参与,充分经历了知识的形成、发展与应用的过程,在这个过程中掌握了知识,形成了技能,发展了思维;教学效果很好!

  *2.4一元二次方程根与系数的关系

  教学目标【知识与技能】掌握一元二次方程根与系数的关系,会运用关系定理求已知一元二次方程的两根之和及

  两根之积,并会解一些简单的问题.【过程与方法】经历一元二次方程根与系数关系的探究过程,培养学生的观察思考、归纳概括能力,在

  运用关系解决问题的过程中,培养学生解决问题能力,渗透整体的数学思想,求简思想.

  46

  【情感态度】通过学生自己探究,发现根与系数的关系,增强学习的信心,培养科学探究精神.【教学重点】根与系数关系及运用.【教学难点】定理的发现及运用.教学过程一、情景导入,初步认知我们知道,一元二次方程ax2+bx+c=0的根的值是由a、b、c来决定的.除此之外,根与系数之间还有什么关系呢?【教学说明】由问题引入新课,提高学生学习兴趣.二、思考探究,获取新知1.探究规律先填空,再找规律:

  2.若x1、x2是一元二次方程ax2+bx+c=0(a≠0)的两个根,你能猜想x1+x2=______,x1·x2=______.

  3.你能证明你的猜想吗?当Δ≥0时,一元二次方程ax2+bx+c=0(a≠0)有两个根,分别为:

  x1-b

  b2-4ac2a

  ,x2

  -b-b2-4ac2a

  【归纳结论】当Δ≥0时,一元二次方程的根与系数之间具有以下关系:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.即:

  这种关系称为韦达定理.【教学说明】通过学生计算一些特殊的一元二次方程的两根之和与两根之积,启发学生

  47

  从中发现存在的一般规律,渗透特殊到一般的思考方法.三、运用新知,深化理解1.教材P47例1、例2.2.利用根与系数的关系,求一元二次方程2x2+3x-1=0的两个根的.(1)平方和(2)倒数和分析:根据一元二次方程的两根与系数之间的关系可求.

  3.已知方程5x2+kx-6=0的一个根为2,求它的另一个根及k的值.分析:根据一元二次方程的两根与系数之间的关系可求.解:设方程的另一个根是x1,那么2x1=-6/5∴x1=-3/5又x1+2=-k/5∴k=-74.已知一元二次方程x2-6x-5=0的两根为a、b,则1/a+1/b的值是多少?解:∵a,b是一元二次方程的两根,∴a+b=6,ab=-5,

  5.已知方程x2-4x-1=0有两个实数根x1,x2,要求不解方程,求值:(1)(x1+1)(x2+1)(2)x2x1+x1x2解:x1+x2=-b/a=4;x1x2=c/a=-1,(1)(x1+1)(x2+1),=x1x2+x1+x2+1,=-1+4+1=4;

  48

  6.已知x,y均为实数,且满足关系式x2-2x-6=0,y2-2y-6=0,求x/y+y/x的值.解:当x≠y时,∵x、y满足关系式x2-2x-6=0,y2-2y-6=0,∴x、y是z2-2z-6=0的两根,∴x+y=2,xy=-6,

  当x,y的值相等时,原式=2.故答案为:-8/3或2.【教学说明】目的是考察学生灵活运用知识解决问题能力,让学生感受到根与系数的关系在解题中的运用,同时也考察学生思维的严密性.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题2.4”中第1、2、3题.教学反思此节课在研究方程的根与系数关系时,先从具体例子观察、归纳其规律,并且先从二次项系数是1的方程入手,然后提出二次项系数不是1的,由此,猜想一般的一元二次方程的根与系数关系,最后对此猜想的正确性作出证明.这个全过程对培养学生正确的思考方法很有价值.

  49

  2.5一元二次方程的应用

  第1课时一元二次方程的应用(1)

  教学目标【知识与技能】使学生会用列一元二次方程的方法解应用题.【过程与方法】让学生在经历运用一元二次方程解决一些代数问题的过程中体会一元二次方程的应用

  价值.【情感态度】在应用一元二次方程的过程中,提高学生的分析问题、解决问题的能力.【教学重点】建立一元二次方程模型解决一些代数问题.【教学难点】把一些代数问题化归为解一元二次方程的问题.

  50

  教学过程一、情景导入,初步认知列方程解应用问题的步骤是什么?①审题,②设未知数,③列方程,④解方程,⑤答【教学说明】初一学过一元一次方程的应用,实际上是据实际题意,设未知数,列出一

  元一次方程求解,从而得到问题的解决.但有的实际问题,列出的方程不是一元一次方程,是一元二次方程,这就是我们本节课所研究的问题,一元二次方程的应用.

  二、思考探究,获取新知1.某省农作物秸秆资源巨大,但合理使用量十分有限,因此该省准备引进适用的新技术来提高秸秆的合理使用率,若今年的使用率为40%,计划后年的使用率达到90%,求这两年秸秆使用率的年平均增长率(假设该省每年产生的秸秆总量不变)分析:由于今年到后年间隔两年,所以问题中涉及的等量关系是:今年的使用率×(1+年平均增长率)2=后年的使用率解:设这两年秸秆使用率的年平均增长率为x,则根据等量关系,可列出方程:40%(1+x)2=90%解得:x1=50%,x2=-2.5根据题意可知:x=50%答:这两年秸秆使用率的年增长率为50%.2.为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每瓶零售价由100元降为81元.求平均每次降价的百分率.分析:问题中涉及的等量关系是:原价×(1-平均每次降价的百分率)2=现在的售价解:设平均每次降价的百分率x,则根据等量关系,可列出方程:100(1-x)2=81解得:x1=10%,x2=1.9根据题意可知:x=10%答:平均每次降价的百分率为10%.3.“议一议”运用一元二次方程模型解决实际问题的步骤有哪些?【归纳结论】运用一元二次方程模型解决实际问题的步骤:分析实际问题→建立一元二次方程模型→解一元二次方程→一元二次方程的根的检验→实际问题的解.【教学说明】使学生感受、明白利用一元二次方程解决实际问题的过程与方法.

  51

  三、运用新知,深化理解1.见教材P50例2.2.一件商品的原价是121元,经过两次降价后的价格为100元.如果每次降价的百分率都是x,根据题意列方程得.【答案】121(1-x)2=1003.某小区2013年屋顶绿化面积为2000平方米,计划2015年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是多少?分析:本题需先设出这个增长率是x,再根据已知条件找出等量关系列出方程,求出x的值,即可得出答案.解:设这个增长率是x,根据题意得:2000×(1+x)2=2880解得:x1=20%,x2=-220%(舍去)故答案为:20%.4.某电脑公司2012年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40%,该公司预计2014年经营总收入要达到2160万元,且计划从2012年到2014年,每年经营总收入的年增长率相同,问2013年预计经营总收入为多少万元?解:设每年经营总收入的年增长率为a.列方程,600÷40%×(1+a)2=2160解方程,a1=0.2a2=-2.2,(不符合题意,舍去)∴每年经营总收入的年增长率为0.2则2013年预计经营总收入为:600÷40%×(1+0.2)=600÷40%×1.2=1800答:2013年预计经营总收入为1800万元.5.将进货单价为40元的商品按50元售出时,能卖出500个,已知这种商品每个涨价1元,其销售量就减少10个,若这种商品涨价x元,则可赚得y元的利润.(1)写出x与y之间的关系式;(2)为了赚得8000元利润,售价应定为多少元,这时应进货多少个?解∶(1)商品的单价为50+x元,每个的利润是(50+x)-40元,销售量是500-10x个,则依题意得y=[(50+x)-40](500-10x),即y=-10x2+400x+5000.(2)依题意,得-10x2+400x+5000=8000.整理,得x2-40x+300=0.

  52

  解得x1=10,x2=30.所以商品的单价应定为50+10=60(元)或50+30=80(元).当商品的单价为60元时,其进货量只能是500-10×10=400(个);当商品每个单价为80元时,其进货量只能是500-10×30=200(个).6.“国运兴衰,系于教育”图中给出了我国从1998─2002年每年教育经费投入的情况.(1)由图可见,1998─2002年的五年内,我国教育经费投入呈现出趋势;(2)如果我国的教育经费从2002年的5500亿元,增加到2004年7920亿元,那么这两年的教育经费平均年增长率为多少?

  解:(1)上升或增长.(2)设平均每年增长率为x.依题意,5500(1+x)2=7920解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:这两年的教育经费平均年增长率为20%.【教学说明】进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题2.5”中第1、2题.教学反思《一元二次方程的应用——增长率及利润问题》与我们的生活密切相关,在解决增长率问题时,要弄清关键词语的含义和有关数量间的关系,掌握其规律,还应注意各种数据变化的基础,针对本节课的内容,制作了多媒体教学课件,让学生在探讨、练习中完成所学内容.本节课中,同学们能积极投入到课堂教学中,认真思考、讨论,踊跃发言,课堂气氛活跃,在个别问题的回答上,学生大胆发言,配合默契,达到了积极的教学效果.

  53

  第2课时一元二次方程的应用(2)

  教学目标【知识与技能】会建立一元二次方程的模型解决实际问题,并能根据具体问题的实际意义,对方程解的

  合理性作出解释.【过程与方法】进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力,培养学生

  用数学的意识.【情感态度】让学生进一步感受一元二次方程的应用价值,提高学生的数学应用意识.【教学重点】应用一元二次方程解决实际问题.【教学难点】从实际问题中建立一元二次方程的模型.

  教学过程一、情景导入,初步认知复习列方程解应用题的一般步骤:(1)审题:仔细阅读题目,分析题意,明确题目要求,弄清已知数、未知数以及它们

  之间的关系;(2)设未知数:用字母(如x)表示题中的未知数,通常是求什么量,就设这个量为x;(3)列方程:根据题中已知量和未知量之间的关系列出方程;(4)解方程:求出所给方程的解;(5)检验:既要检验所求方程的解是否满足所列出的方程,又要检验它是否能使实际

  问题有意义;(6)作答:根据题意,选择合理的答案.2.说一说,矩形的面积与它的两邻边长有什么关系?【教学说明】复习相关知识,为本节课的学习作准备.二、思考探究,获取新知1.思考:如图,在一长为40cm,宽为28cm的矩形铁皮的四角截去四个全等的小正方形

  后,折成一个无盖的长方体盒子,若已知长方体盒子的底面积为364平方厘米,求截去的四个小正方形的边长.

  54

  (1)引导学生审题,弄清已知数、未知数以及它们之间的关系;(2)确定本题的等量关系是:盒子的底面积=盒子的底面长×盒子的底面宽;(3)引导学生根据题意设未知数;(4)引导学生根据等量关系列方程;(5)引导学生求出所列方程的解;(6)检验所求方程的解合理性;(7)根据题意作答.【教学说明】设未知数和作答时都不要漏写单位,多项式时要加括号再写单位.2.如图,一长为32m,宽为20m的矩形地面上修建有同样宽的道路(图中阴影部分),余下部分进行了绿化,若已知绿化面积为540m2,求道路的宽.

  分析:本题考查了一元二次方程的应用,这类题目体现了数形结合的思想,如图,需利用平移把不规则的图形变为规则图形,进而即可列出方程,求出答案.还要注意根据题意考虑根的合理性,从而确定根的取舍.本题可设道路宽为x米,利用平移把不规则的图形变为规则图形,如此一来,所有草坪面积之和就变为了(32-x)(20-x)米2,进而即可列出方程,求出答案.

  解:设道路宽为x米(32-x)(20-x)=540解得:x1=2,x2=50(不合题意,舍去)∴x=2答:设道路宽为2米3.如图所示,在△ABC中,∠C=90°,AC=6cm.BC=8cm,点P沿AC边从点A向终点C以1cm/s的速度移动,同时点Q沿CB边从C向终点B以2cm/s的速度移动,且当其中一点达到终点

  55

  时,另一点也随之停止移动,问点P、Q出发几秒后,可使△PCQ的面积为9cm2?

  解:设xs后,可使△PCQ的面积为9cm2.由题意得,AP=xcm,PC=(6-x)cm,CQ=2xcm则1/2·(6-x)·2x=9.整理,得x2-6x+9=0,解得x1=x2=3.所以P、Q同时出发,3s后可使△PCQ的面积为9cm2.【教学说明】使学生感受、明白在几何图形中利用一元二次方程解决实际问题的过程与方法.三、运用新知,深化理解1.如图,某中学为方便师生活动,准备在长30m,宽20m的矩形草坪上修两横两纵四条小路,横纵路的宽度之比为3∶2,若使余下的草坪面积是原来草坪面积的四分之三,若横路宽为3xcm,则可列方程为.

  分析:若设小路的横路宽为3xm,则纵路宽为2xm,我们利用“图形经过移动,它的面积大小不会改变”的道理,把纵、横四条路移动一下(目的是求出路面的宽,至于实际施工,仍可按原图的位置修路),则余下的草坪面积可用含x的代数式表示为(30-4x)(20-6x)m2,又由题意可知余下草坪的面积为原草坪面积的四分之三,可列方程.

  则可列方程:(30-4x)(20-6x)=3/4×30×20【答案】(30-4x)(20-6x)=3/4×30×202.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是()

  56

  A.x2+130x-1400=0

  B.x2+65x-350=0

  C.x2-130x-1400=0

  D.x2-65x-350=0

  【答案】B

  3.如图,利用一面墙(墙的长度不超过45m),用80m长

  的篱笆围

  一个矩形场地.

  (1)怎样围才能使矩形场地的面积为750m2?

  (2)能否使所围矩形场地的面积为810m2,为什么?

  解:(1)设所围矩形ABCD的长AB为x米,则宽AD为12(80-x)米.

  依题意,得x·1/2(80-x)=750.

  即,x2-80x+1500=0,

  解此方程,得x1=30,x2=50.

  ∵墙的长度不超过45m,∴x2=50不合题意,应舍去.

  当x=30时,1/2(80-x)=1/2×(80-30)=25,

  所以,当所围矩形的长为30m、宽为25m时,能使矩形的面积为750m2.

  (2)不能.

  因为由x·1/2(80-x)=810得x2-80x+1620=0.

  又∵b2-4ac=(-80)2-4×1×1620=-80<0,

  ∴上述方程没有实数根.

  因此,不能使所围矩形场地的面积为810m2.

  4.如图①,在一幅矩形地毯的四周镶有宽度相同的边.如图②,地毯中央的矩形图案长

  6米、宽3米,整个地毯的面积是40平方米.求花边的宽.

  分析:本题可根据地毯的面积为40平方米来列方程,其等量关系式可表示为:(矩形图案的长+两个花边的宽)×(矩形图案的宽+两个花边的宽)=地毯的面积.解:设花边的宽为x米,根据题意得(2x+6)(2x+3)=40,解得x1=1,x2=-11/2,

  57

  x2=-11/2不合题意,舍去.答:花边的宽为1米.5.我校原有一块正方形空地,后来在这块空地上划出部分区域栽种花草(如图),原空地一边减少了1m,另一边减少了2m,使剩余的空地面积为12m2,求原正方形的边长.

  分析:本题可设原正方形的边长为xm,则剩余的空地长为(x-1)m,宽为(x-2)m.根据长方形的面积公式方程可列出,进而可求出原正方形的边长.

  解:设原正方形的边长为xm,依题意有(x-1)(x-2)=12整理,得x2-3x-10=0.∴(x-5)(x+2)=0,∴x1=5,x2=-2(不合题意,舍去)答:原正方形的边长5m.6.小明家有一块长8m,宽6m的矩形空地,现准备在该空地上建造一个十字花园(图中阴影部分),并使花园面积为空地面积的一半,小明设计了如图的方案,求图中的x值.

  解:据题意,得(8-x)(6-x)=1/2×8×6.解得x1=12,x2=2.x1不合题意,舍去.∴x=2.【教学说明】进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题2.5”中第3、4、7题.教学反思

  58

  本节课以学生熟悉的现实生活为问题的背景,让学生从具体的问题情境中抽象出数量关系,归纳出变化规律,并能用数学符号表示,最终解决实际问题.这类注重联系实际考查学生数学应用能力的问题,体现时代性,并且结合社会热点、焦点问题,引导学生关注国家、人类和世界的命运.既有强烈的德育功能,又可以让学生从数学的角度分析社会现象,体会数学在现实生活中的作用.

  3.1比例线段

  3.1.1比例的基本性质教学目标【知识与技能】1.理解比例的基本性质.2.能根据比例的基本性质求比值.3.能根据条件写出比例式或进行比例式的简单变形.【过程与方法】通过例题的学习,培养学生的灵活运用能力.【情感态度】建立初步的空间观念,发展形象思维;并通过有趣的图形,培养学生学习数学的兴趣.【教学重点】比例的基本性质.【教学难点】比例的基本性质及运用.教学过程一、情景导入,初步认知1.举例说明生活中存在大量形状相同,但大小不同的图形.如:照片、放电影中的底片中的图与银幕的像、不同大小的国旗、两把不同大小但都含有30°角的三角尺等.2.美丽的蝴蝶身长与双翅展开后的长度之比约为0.618.一些长方形的画框,宽与长之比也设计成0.618,许多美丽的形状都与0.618这个比值有关.你知道0.618这个比值的来历吗?3.如何求两个数的比值?

  59

  【教学说明】说明学习本章节的重要意义.

  二、思考探究,获取新知

  1.阅读与思考题

  (1)什么是两个数的比?2与-3的比;-4与6的比.如何表示?其比值相等吗?用小学学

  过的方法可说成什么?可写成什么形式?

  (2)比与比例有什么区别?

  (3)用字母a,b,c,d表示数,上述四个数成比例可写成怎样的形式?你知道内项、外项

  和第四比例项的概念吗?

  【归纳结论】如果两个数的比值与另两个数的比值相等,就说这四个数成比例.通常我

  们把a,b,c.d四个实数成比例表示成a∶b=c∶d或ac,其中a,d叫作比例外项,b,c叫bd

  作比例内项.

  2.如果四个数a、b、c、d成比例,即ac,那么ab吗?反过来呢?

  bd

  dc

  【教学说明】引导学生利用等式的性质一起证明.由此,你能得到比例的基本性质吗?

  【归纳结论】比例的基本性质:如果ac,那么ab.

  bd

  dc

  3.已知四个数a、b、c、d成比例,即:ac,下列各式成立吗?若成立,请说明理由.bd

  bd;ab;abcd.accdbd

  分析:

  (1)比较条件和结论的形式得到解题思路;

  (2)采用设比值较为简单.

  【教学说明】这三个小题反映了在比例式的变形中的两种常用方法:一是利用等式的基

  本性质;二是设比值.

  4.根据下列条件,求a∶b的值.

  (1)4a=5b,

  (2)ab.78

  解:(1)∵4a=5b,∴a5.b4

  (2)∵ab,∴8a=7b,78

  60

  ∴a7.b8

  三、运用新知,深化理解1.已知:x∶(x+1)=(1—x)∶3,求x.解:根据比例的基本性质得,

  3.已知a∶b∶c=1∶3∶5且a+2b-c=8,求a、b、c.解:设a=x,则b=3x,c=5x,∴x+2×3x-5x=8,2x=8,x=4,∴a=4,b=3×4=12,c=5×4=20.4.已知x∶y=3∶4,x∶z=2∶3,求x∶y∶z的值.解:因为x∶y=3∶4=6∶8,x∶z=2∶3=6∶9,所以x∶y∶z=6∶8∶9.

  61

  7.操场上有一群学生在玩游戏,其中男生与女生的人数比例是3∶2,后来又有6名女同学参加进来,此时男生与女生人数的比为5∶4,求原来有多少名男生和女生?

  【教学说明】引导学生用比例的性质解决问题.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业∶教材“习题3.1”中第1题.教学反思在处理比例的基本性质前先对比例的项的有关概念进行了讲解,对于比例的内项与外项,我是这样处理的,观察a∶b=c∶d,a,d在比例式的外部,所以称为比例外项,b,c在比例式的内部,所以称为比例内项,这样解释形象直观,学生容易理解.概念教学应该注意讲练结合,通过练习达到对概念的理解.

  教学目标

  3.1.2成比例线段

  62

  【知识与技能】1.掌握比例线段的概念及其性质.2.会求两条线段的比及判断四条线段是否成比例.3.知道黄金分割的定义,会判断某一点是否为一条线段的黄金分割点.【过程与方法】能够灵活运用比例线段的性质解决问题.【情感态度】感知知识的实际应用,增强对知识就是力量的客观认识,进一步加强理论联系实际的学习方法.【教学重点】能够灵活运用比例线段的性质解决问题.【教学难点】掌握黄金分割的概念,并能解决相关的实际问题.教学过程一、情景导入,初步认知1.1、2、4、8这四个数成比例吗?如何确定四个数成比例?2.比例基本性质是什么?【教学说明】复习回顾,引入新课.二、思考探究,获取新知1.如下图,在方格纸上(设小方格边长为单位1)有△ABC与△A′B′C′,它们的顶点都在格点上,试求出线段AB,BC,AC,A′B′,B′C′,A′C′的长度,并计算AB与A′B′,BC与B′C′,AC与A′C′的长度的比值.

  63

  【教学说明】注意:(1)两线段是几何图形,可用它的长度比来确定;(2)度量线段的长,单位有多种,但求比值必须在同一长度单位下,比值一定是正数,比值与采用的长度单位无关.(3)表示方式与数字的比表示类同,但它也可以表示为AB∶CD.2.什么是比例线段?【归纳结论】在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫作成比例线段,简称比例线段.3.能否将一条线段AB分成不相等的两部分,使较短线段CB与较长线段AC的比等于线段AC与线段AB的比呢?即,使得:CBAC.

  ACAB【教学说明】引导学生用一元二次方程的知识解决问题.

  【教学说明】学生通过“计算、证明”等活动,得到并加深对黄金分割的理解.三、运用新知,深化理解1.已知四条线段a、b、c、d的长度,试判断它们是否成比例.(1)a=16cm,b=8cm,c=5cm,d=10cm;(2)a=8cm,b=5cm,c=6cm,d=10cm.

  (2)由已知得ab≠cd,ac≠bd,ad≠bc,所以a、b、c、d四条线段不成比例.2.若ac=bd,则下列各式一定成立的是()

  64

  【答案】B3.已知C是线段AB的一个黄金分割点,则AC∶AB为()

  【答案】D

  6.已知a∶b∶c=4∶3∶2,且a+3b-3c=14.(1)求a,b,c;(2)求4a-3b+c的值.解:(1)设a=4k,b=3k,c=2k.∵a+3b-3c=14,∴4k+9k-6k=14,∴7k=14,∴k=2,∴a=8,b=6,c=4.(2)4a-3b+c=32-18+4=18.7.在△ABC中,D是BC上一点,若AB=15cm,AC=10cm,且BD∶DC=AB∶AC,BD-DC=2cm,求BC.解:略.8.在比例尺为1︰2000的地图上测得AB两地间的图上距离为5cm,则AB两地间的实际

  65

  距离为多少米?解:设两地之间的实际距离为x,则:15,2000xx=5×2000=10000cm=100m9.在人体躯干(脚底到肚脐的长度)与身高的比例上,肚脐是理想的黄金分割点,即比例

  越接近0.618越给人以美感.张女士的身高为1.65米,身体躯干(脚底到肚脐的高度)为1.00米,那么她应选择约多高的高跟鞋看起来更美.(精确到十分位)

  10.已知线段AB,求作线段AB的黄金分割点C,使AC>BC.解:作法:(1)延长线段AB至F,使AB=BF,分别以A、F为圆心,以大于等于线段AB的长为半径作弧,两弧相交于点G,连接BG,则BG⊥AB,在BG上取点D,使BD=1AB,

  2(2)连接AD,在AD上截取DE=DB,(3)在AB上截取AC=AE.如图,点C就是线段AB的黄金分割点.

  【教学说明】通过例题分析使学生进一步理解比例线段的应用和黄金分割的意义.使学生能更好地掌握本节知识.

  四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业∶教材“习题3.1”中第2、3、4题.教学反思在学习本节内容之前,学生已理解比例线段的性质,初步掌握了比例线段在几何中的应用.本节课学习的黄金分割是一个新的概念,学生缺少这方面知识的积累,因此教学中在内容选择上,充分利用网络资源,选用大量图文作为背景,通过建筑、艺术、生活中的实例了解黄金分割,体现数学丰富的文化价值.同时,在应用中进一步理解线段的比、成比例线段

  66

  等相关内容,在实际操作、思考、交流等过程中增强学生的实践意识.这节课的不足之处是教学内容比较多,因为时间关系,有关黄金分割的相关计算和应用学生练习得比较少,部分学生对这种类型的题目掌握不好.另外学生对黄金分割点的证明理解还不到位.

  3.2平行线分线段成比例

  教学目标【知识与技能】在理解的基础上掌握平行线分线段成比例定理和三角形一边平行线的性质与判定定理,并会灵活应用.会做已知线段成已知比的作图题.【过程与方法】通过学习定理再次锻炼类比的数学思想,能把一个稍复杂的图形分成几个基本图形,通过应用锻炼识图能力和推理论证能力.【情感态度】通过定理的学习知道认识事物的一般规律是从特殊到一般,并能欣赏数学表达式的对称

  67

  美.【教学重点】定理的应用.【教学难点】定理的推导证明.教学过程一、情景导入,初步认知1.求出下列各式中的x∶y.

  【教学说明】其中第1题以学生分别口答、共同核对的方式进行;第2、3题以学生各自解答,指定2人板演,而后共同核对板演所述,并以追问理论根据的方式进行.

  二、思考探究,获取新知1.下图是一架梯子的示意图,由生活常识可以知道:AA1,BB1,CC1,DD1互相平行,且若AB=BC,则A1B1=B1C1,由此可以猜测:若两条直线被一组平行线所截,如果在其中一条直线上截得的线段相等,那么在另一条直线上截得的线段也相等,这个猜测是真的吗?

  2.如图,已知直线a∥b∥c,直线l1、l2被直线a、b、c截得的线段分别为AB、BC和A1B1、B1C1,且AB=BC.你能证明A1B1=B1C1吗?

  【教学说明】引导学生分析问题,作出辅助线,再写出证明过程.

  68

  【归纳结论】两条直线被一组平行线所截,如果在其中一条直线上截得的线段相等,那么在另一条直线上截得的线段也相等.

  3.如图,任意画直线l1、l2,再画三条与其相交的平行线a、b、c.分别度量l1、l2被直线a、b、c截得的线段AB、BC、A1B1、B1C1的长度.AB与A1B1相等吗?任意平移直线c,再

  BCB1C1度量AB、BC、A1B1、B1C1的长度,AB与A1B1还相等吗?

  BCB1C1【教学说明】引导学生进行分析,说出理由.由此,你能得到什么结论?【归纳结论】两条直线被一组平行线所截,所得的对应线段成比例.4.如图,在△ABC中,已知DE∥BC,则ADAE和ADAE成立吗?为什么?由此,

  DBECABAC你能得到什么结论?

  【归纳结论】平行于三角形一边的直线截其他两边,所得的对应线段成比例.【教学说明】引导学生初步总结出平行线分线段成比例定理及推论,然后师生共同归纳得出定理并板书定理.三、运用新知,深化理解1.见教材P71例题.

  3.如图,在△ABC中,若BD∶DC=CE∶EA=2∶1,AD和BE交于F,则AF∶FD=___.

  69

  【答案】3∶44.如图,在△ABC中,D、E分别在BC、AC上,且DC∶BD=3∶1,AE∶EC=2∶1,AD与BE交于F,则AF∶FD=______.

  【答案】8∶15.如图所示,AD∥EG∥BC,AD=6,BC=9,AE∶AB=2∶3.求GF的长.

  6.已知,如图,AD∥EF∥BC,BE=3,AE=9,FC=2.求DF的长.

  70

  7.如图,已知AB∥EF∥CD,AF=3,AD=5,CE=3,求BE的长.分析:连接AE并延长交CD于G,根据平行线分线段成比例定理,可得AF∶AD=AE∶AG,从而求出AE∶EG,再据平行线分线段成比例定理,可得BE∶EC=AE∶EG,计算可得BE的值.

  【教学说明】通过本例题分析使学生进一步理解定理.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业∶教材“习题3.2”中第1、2、4题.教学反思对于本节课的学习,学生还是要以探索归纳,动手练习为主.既要复习知识点,更重要的是要在复习的过程中不断提高学生用数学解决问题的能力.

  71

  3.3相似图形

  教学目标【知识与技能】1.了解相似三角形、多边形的概念和性质.2.会用相似多边形的性质解决简单的几何问题.【过程与方法】了解相似的概念,能按要求作出简单图形的相似图形.【情感态度】在探索的学习过程中感受成功,建立自信,体验数学学习活动充满着探索与创造,交流与合作的乐趣.【教学重点】相似多边形的定义和性质.【教学难点】判断两个多边形是否相似.教学过程一、情景导入,初步认知

  1.你能看出下例两组图片的共同之处吗?2.你还记得全等的图形吗?说一说全等的图形和形状相同的图形之间有什么联系与区别!【教学说明】通过对生活中形状相同的图形的观察和欣赏,初步感受相似.二、思考探究,获取新知

  72

  1.上面两组图片,它们分别是由其中的一幅图放大或缩小得到的,把一个图形放大或缩小得到的图形与原图形之间有什么关系呢?

  【归纳结论】把一个图形放大(或缩小)得到的图形与原图形是相似的.2.你能列举生活中,有哪些图形是相似的呢?3.如图,在方格纸内先任意画一个△ABC,然后画出△ABC经某一相似变换(如放大或缩小若干倍)后得到像△A′B′C′(点A′、B′、C′分别对应点A、B、C).

  问题讨论1:△A′B′C′与△ABC对应角之间有什么关系?问题讨论2:△A′B′C′与△ABC对应边之间有什么关系?【归纳结论】我们把三个角对应相等,且三条边对应成比例的两个三角形叫作相似三角形.4.相似三角形的表示方法.表示:相似用符号“∽”来表示,读作“相似于”,如△A′B′C′与△ABC相似,记作“△A′B′C′∽△ABC”.5.相似三角形对应边的比叫作相似比.如果△ABC与△A′B′C′的相似比为k,则△A′B′C′与△ABC相似比为1.由此,我们可以得到相似三角形的对应角相等,对应边成比例.

  k6.如图:四边形A1B1C1D1是四边形ABCD经过相似变换所得的,请分别求出这两个四边形的对应边的长度,并分别量出这两个四边形各个内角的度数,然后与你的同伴议一议:这两个四边形的对应角之间有什么关系?对应边之间有什么关系?

  【归纳结论】对于两个边数相同的多边形,如果它们的对应角相等,对应边成比例,那么这两个多边形叫作相似多边形.相似多边形的对应边的比叫作相似比.相似多边形的对应角相等,对应边成比例.

  73

  【教学说明】本节课要说明两个相似多边形,应结合定义说明理由,也就是说要同时满足对应角相等,对应边成比例;但要说明不相似,则只要否定其中一个条件即可.

  三、运用新知,深化理解1.下列每组图形的形状相同,它们的对应角有怎样的关系?对应边呢?(1)正三角形ABC与正三角形DEF;(2)正方形ABCD与正方形EFGH.分析:(1)由于正三角形每个角等于60°,所以∠A=∠D=60°,∠B=∠E=60°,∠C=∠F=60°.由于正三角形三边相等,所以AB∶DE=BC∶EF=CA∶FD.(2)由于正方形的每个角都是直角,所以∠A=∠E=90°,∠B=∠F=90°,∠C=∠G=90°,∠D=∠H=90°,由于正方形的四边相等,所以AB∶EF=BC∶FG=CD∶GH=DA∶HE.解:各对应角相等、各对应边成比例.2.两个相似多边形,其中一个多边形的周长和面积分别是10和8,另一个多边形的周长为25,求另一个多边形的面积.分析:利用相似多边形的对应边的比相等,对应角相等可得.解:两个相似多边形,周长的比等于相似比,因而相似比是10∶25=2∶5,而面积的比等于相似比的平方,设另一个多边形的面积是x,则8∶x=(2∶5)2,解得:x=50,另一个多边形的面积是50.3.两个相似的五边形,一个各边长分别为1,2,3,4,5,另一个最大边长为10,求后一个五边形的最短边的长.分析:根据相似多边形的对应边的比相等可得.解:两个相似的五边形,最长的边是5,另一个最大边长为10,则相似比是5∶10=1∶2,根据相似五边形的对应边的比相等,因而设后一个五边形的最短边的长为x,则1∶x=1∶2,解得:x=2,后一个五边形的最短边的长为2.4.设四边形ABCD与四边形A1B1C1D1是相似的图形,且A与A1、B与B1、C与C1、D与D1是对应点,已知AB=12,BC=18,CD=18,AD=9,A1B1=8,则四边形A1B1C1D1的周长为.分析:四边形ABCD与四边形A1B1C1D1是相似的图形,则根据相似多边形对应边的比相等,就可求得A1B1C1D1的其它边的长,就可求得周长.

  74

  5.如图,四边形ABCD∽四边形A′B′C′D′,则∠1=____,AD=______.

  分析:四边形ABCD∽四边形A′B′C′D′,则∠1=∠B=70°,

  解得AD=28,∠1=70°.【答案】70°28【教学说明】通过例题分析使学生进一步理解相似多边形的有关知识.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题3.3”中第1、2、3题.教学反思本节课主要是相似多边形的定义,这节课主要是让学生自学,将定义和相似比等概念进行理解记忆,通过与相似三角形的定义的对比,得到要理解相似多边形的概念,要从以下几方面入手:(1)两个多边形相似,必须具备两个条件:①各角对应相等;②各边对应成比例,这两个条件缺一不可;(2)在相似多边形中,对应相等的角是对应角,对应成比例的边是对应边;(3)两多边形相似用“∽”表示,读作“相似于”;(4)形状相同的多边形相似.在这

  75

  里,初学者因为有相似三角形的基础,往往在判定两个多边形相似时出现只说明满足一个条件便下结论是相似多边形的错误.另外在用符号表示两个多边形相似时,要把表示对应角的顶点写在对应位置上,这样可以一目了然地知道它们的对应角和对应边.

  3.4相似三角形的判定与性质

  3.4.1相似三角形的判定

  第1课时相似三角形的判定(1)

  教学目标【知识与技能】

  76

  经历三角形相似的判定定理“平行于三角形的一边的直线与其它两边相交,截得的三角形与原三角形相似”和“两角分别相等的两个三角形相似”的探索及证明过程.

  【过程与方法】让学生经历观察、实验、猜想、证明的过程,培养学生提出问题、分析问题、解决问题的能力.【情感态度】通过学生积极参与,激发学生学习数学的兴趣,体验数学的探索与创造的快乐.【教学重点】三角形相似的判定定理及应用.【教学难点】三角形相似的判定定理及应用.教学过程一、情景导入,初步认知现有一块三角形玻璃ABC,不小心打碎了,只剩下∠A和∠B比较完整.如果用这两个角去配制一块完全一样的玻璃,能成功吗?【教学说明】选择以旧孕新为切入点,创设问题情境,引入新课.二、思考探究,获取新知1.在△ABC中,D为AB上任意一点,过点D作BC的平行线DE,交AC于点E.(1)△ADE与△ABC的三个角分别相等吗?(2)分别度量△ADE与△ABC的边长,它们的边长是否对应成比例?(3)△ADE与△ABC之间有什么关系?平行移动DE的位置,你的结论还成立吗?【归纳结论】平行于三角形的一边的直线与其他两边相交,截得的三角形与原三角形相似.2.如图,D、E分别是△ABC的AB与AC边的中点,求证:△ADE与△ABC相似.证明:∵D、E分别是△ABC的AB与AC边的中点,∴DE∥BC,∴△ADE∽△ABC.3.任意画△ABC与△A′B′C′,使∠A′=∠A,∠B′=∠B.(1)∠C′=∠C吗?

  77

  (2)分别度量这两个三角形的边长,它们是否对应成比例?

  (3)把你的结果与同学交流,你们的结论相同吗?由此你有什

  么

  发现?

  【教学说明】此时,教师鼓励学生大胆猜想,得出命题.如果学生还能从不同角度研究,

  或许还有新的方法进行证明,要大胆鼓励.

  【归纳结论】两角分别相等的两个三角形相似.

  4.如图,在△ABC中,∠C=90°,DE⊥AB于E,DF⊥BC于F.求证:△DEH∽△BCA.

  证明:∵DE⊥AB,DF⊥BC,

  ∴∠D+∠DHE=∠B+∠BHF=90°,

  而∠BHF=∠DHE,

  ∴∠D=∠B,

  又∵∠HED=∠C=90°,

  ∴△DEH∽△BCA.

  三、运用新知,深化理解

  1.见教材P78例2、P80例4.

  2.判断题:

  (1)有一个锐角对应相等的两个直角三角形相似.()

  (2)所有的直角三角形都相似.()

  (3)有一个角相等的两个等腰三角形相似.()

  (4)顶角相等的两个等腰三角形相似.()

  【答案】(1)√;(2)×;(3)×;(4)√

  3.如图:点G在平行四边形ABCD的边DC的延长线上,AG交BC、BD于点E、F,则△AGD

  ∽_____∽____.

  解析:关键是找“角相等”,除已知条件中已明确给出的以外,还应结合具体的图形,

  利用公共角、对顶角及由平行线产生的一系列相等的角.本例除公共角∠G外,由BC∥AD可得

  ∠1=∠2,所以△AGD∽△EGC.再∠1=∠4(对顶角),由AB∥DG可得∠3=∠G,所以△EGC∽

  △EAB.

  【答案】△EGC△EAB

  4.已知:在△ABC和△DEF中,∠A=40°,∠B=80°,∠E=80°,∠F=60°.

  求证:△ABC∽△DEF.

  78

  证明:∵在△ABC中,∠A=40°,∠B=80°,∴∠C=180°-∠A-∠B=180°-40°-80°=60°,∵在△DEF中,∠E=80°,∠F=60°,∴∠B=∠E,∠C=∠F,∴△ABC∽△DEF.(两角对应相等,两三角形相似)5.已知△ABC中,AB=AC,∠A=36°,BD是角平分线,求证:△ABC∽△BCD.分析:证明相似三角形应先找相等的角,显然∠C是公共角,而另一组相等的角则可以通过计算来求得.借助于计算也是一种常用的方法.证明:∵∠A=36°,△ABC是等腰三角形,∴∠ABC=∠C=72°,又BD平分∠ABC,则∠DBC=36°,在△ABC和△BCD中,∠C为公共角,∠A=∠DBC=36°,∴△ABC∽△BCD.6.已知:如图,在Rt△ABC中,CD是斜边AB上的高.求证:△ACD∽△ABC∽△CBD.证明:∵∠A=∠A,∠ADC=∠ACB=90°,∴△ACD∽△ABC,(两角对应相等,两三角形相似)同理△CBD∽△ABC,∴△ABC∽△CBD∽△ACD.【教学说明】学生在独立思考的基础上,小组讨论交流,让学生随时展示自己的想法.从而得到提高.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.

  79

  课后作业布置作业:教材“习题3.4”中第2题.教学反思通过这节课的教学,绝大多数学生能运用本节课所学的知识进行相关的计算和证明;少数学生在探究两个三角形相似的定理时,不会用学过的知识进行证明.

  3.4.2相似三角形的性质

  教学目标【知识与技能】理解掌握相似三角形对应线段(高、中线、角平分线)及相似三角形的面积、周长比与相似比之间的关系.【过程与方法】对性质定理的探究,学生经历观察——猜想——论证——归纳的过程,培养学生主动探究、合作交流的习惯和严谨治学的态度.【情感态度】在学习和探讨的过程中,体验从特殊到一般的认知规律.【教学重点】相似三角形性质的应用.【教学难点】相似三角形性质的应用.教学过程一、情景导入,初步认知1.什么叫相似三角形?相似比指的是什么?2.全等三角形是相似三角形吗?全等三角形的相似比是多少?3.相似三角形的判定方法有哪些?【教学说明】复习相关知识,为本节课的学习做准备.二、思考探究,获取新知1.根据相似三角形的概念可知相似三角形有哪些性质?【归纳结论】相似三角形的基本性质:相似三角形的对应角相等,对应边成比例.2.如图,△ABC和△A′B′C′是两个相似三角形,相似比为k,其中,AD、A′D′分别为BC、B′C′边上的高,那么,AD和A′D′之间有什么关系?

  80

  证明:∵△ABC∽△A′B′C′,∴∠B=∠B′,又∵AD⊥BC,A′D′⊥B′C′,∴∠ADB=∠A′D′B′=90°,∴△ABD∽△A′B′D′,∴AB︰A′B′=AD︰A′D′=k.你能得到什么结论?【归纳结论】相似三角形对应边上的高的比等于相似比.3.如图,△A′B′C′和△ABC是两个相似三角形,相似比为k,求这两个三角形的角平分线A′D′与AD的比.

  解:∵△A′B′C′∽△ABC,∴∠B′=∠B,∠A′B′C′=∠ABC,∵A′D′,AD分别是△A′B′C′与△ABC的角平分线,∴∠B′A′D′=∠BAD,∴△A′B′D′∽△ABD.(有两个角对应相等的两个三角形相似)∴ADAB=k

  ADAB根据上面的探究,你能得到什么结论?【归纳结论】相似三角形对应角平分线的比等于相似比.4.在上图中,如果AD、A′D′分别为BC、B′C′边上的中线,那么,AD和A′D′之间有什么关系?你能证明你的结论吗?【归纳结论】相似三角形对应边上的中线的比等于相似比.5.如图△ABC∽△A′B′C′,ABA′B′=k,AD、A′D′为高线.(1)这两个相似三角形周长比为多少?(2)这两个相似三角形面积比为多少?

  81

  分析:(1)由于△ABC∽△A′B′C′,所以AB︰A′B′=BC︰B′C′=AC︰A′C′=k.由并比的性质可知,(AB+BC+AC)︰(A′B′+B′C′+A′C′)=k.(2)由题意可知,因为△ABD∽△A′B′D′,所以AB︰A′B′=AD︰A′D′=k.因此可得,△ABC的面积︰△A′B′C′的面积=(AD·BC)︰(A′D′·B′C′)=k2.【归纳总结】相似三角形的周长比等于相似比,面积比等于相似比的平方.【教学说明】通过这两个问题,引导学生通过合情推理,得出结论.学生可以通过合作交流,找出解决问题的方法.三、运用新知,深化理解1.见教材P86例9、P88例11、例12.2.已知△ABC∽△A′B′C′,BD和B′D′是它们的对应中线,且AC=3,B′D′=4,

  AC2则BD的长为____.

  分析:因为△ABC∽△A′B′C′,BD和B′D′是它们的对应中线,根据对应中线的比等于相似比,

  【答案】63.在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D,如果△ABC的周长是16,面积是12,那么△DEF的周长、面积依次为()A.8,3B.8,6C.4,3D.4,6分析:根据相似三角形周长比等于相似比,面积比等于相似比的平方可得周长为8,面

  82

  积为3,所以选A.【答案】A4.已知△ABC∽△A′B′C′且S△ABC∶S△A′B′C′=1∶2,则AB∶A′B′=_____.分析:根据相似三角形面积的比等于相似比的平方可求AB∶A′B′=1∶2.【答案】1∶25.把一个三角形改做成和它相似的三角形,如果面积缩小到原来的1,那么边长应缩小2

  到原来的_____.

  分析:根据面积比等于相似比的平方可得相似比为2,所以边长应缩小到原来的2.

  2

  2

  【答案】22

  6.如图,CD是Rt△ABC的斜边AB上的高.(1)则图中有几对相似三角形;(2)若AD=9cm,CD=6cm,求BD;(3)若AB=25cm,BC=15cm,求BD.解:(1)∵CD⊥AB,∴∠ADC=∠BDC=∠ACB=90°.在△ADC和△ACB中,∠ADC=∠ACB=90°,∠A=∠A,∴△ADC∽△ACB,同理可知,△CDB∽△ACB.∴△ADC∽△CDB.所以图中有三对相似三角形.

  7.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.

  (1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD

  83

  的长.(1)证明:∵在梯形ABCD中,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,∴△CDF∽△BGF.(2)由(1)知△CDF∽△BGF,又F是BC的中点,∴BF=FC,∴△CDF≌△BGF,∴DF=FG,CD=BG.又∵EF∥CD,AB∥CD,∴EF∥AG,得2EF=AB+BG.∴BG=2EF-AB=2×4-6=2,∴CD=BG=2cm.8.已知△ABC的三边长分别为5、12、13,与其相似的△A′B′C′的最大边长为26,求

  △A′B′C′的面积S.分析:由△ABC的三边长可以判断出△ABC为直角三角形,又因为△ABC∽△A′B′C′,

  所以△A′B′C′也是直角三角形,那么由△A′B′C′的最大边长为26,可以求出相似比,从而求出△A′B′C′的两条直角边长,再求得△A′B′C′的面积.

  解:设△ABC的三边依次为:BC=5,AC=12,AB=13,∵AB2=BC2+AC2,∴∠C=90°.又∵△ABC∽△A′B′C′,∴∠C′=∠C=90°.

  又BC=5,AC=12,

  ∴B′C′=10,A′C′=24.

  ∴S=1A′C′×B′C′=1×24×10=120.

  2

  2

  (2)已知:两相似三角形对应高的比为3∶10,且这两个三角形的周长差为560cm,求

  84

  它们的周长.分析:(1)用同一个字母k表示出x,y,z.再根据已知条件列方程求得k的值,从而

  进行求解;(2)根据相似三角形周长的比等于对应高的比,求得周长比,再根据周长差进行求解.

  【教学说明】通过例题的拓展延伸,体会类比的数学思想,培养学生大胆猜想、勇于探索、勤于思考的习惯,提高分析问题和解决问题的能力.

  四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题3.4”中第6、7、9题.教学反思本节的主要内容是导出相似三角形的性质定理,并进行初步运用,让学生经历相似三角形性质探索的过程,提高数学思考、分析和探究活动的能力,体会相似三角形中的变量与不变量,体会其中蕴涵的数学思想.

  第2课时相似三角形的判定(2)

  教学目标【知识与技能】经历三角形相似的判定定理“两边成比例且夹角相等的两个三角形相似”和“三边成比例的两个三角形相似”的探索及证明过程.【过程与方法】

  85

  让学生经历观察、实验、猜想、证明的过程,培养学生提出问题、分析问题、解决问题的能力.

  【情感态度】在合作、交流、探讨的学习氛围中,体验学习的快乐,树立学习的信心.【教学重点】掌握判定定理,会运用判定定理判定两个三角形相似.【教学难点】会准确的运用两个三角形相似的条件来判定两个三角形是否相似.教学过程一、情景导入,初步认知问题:(1)相似三角形的定义是什么?三边成比例,三角分别相等的两个三角形相似.(2)判定两个三角形相似,你有哪些方法?方法1:通过定义(不常用);方法2:通过平行线(条件特殊,使用起来有局限性);方法3:判定定理1,两角分别相等的两个三角形相似.【教学说明】引导学生复习学过的知识,承前启后,激发学生学习新知的欲望.

  二、思考探究,获取新知下面我们来探究还可用哪些条件来判定两个三角形相似.1.我们学习了三角形相似的判定定理1,类似于三角形全等的“SAS”判定方法,你能通过类比的方法猜想到三角形相似的其它判定方法吗?2.任意画△ABC与△A′B′C′,使∠A′=∠A,ABAC=k.

  ABAC(1)分别度量∠B′和∠B,∠C′和∠C的大小,它们分别相等吗?(2)分别度量BC和B′C′的长,它们的比等于k吗?(3)改变∠A或k的大小,你的结论相同吗?由此你有什么发现?【教学说明】引导学生画图,并鼓励证明命题归纳结论.【归纳结论】两边成比例且夹角相等的两个三角形相似.3.如图,在△ABC与△DEF中,已知∠C=∠F,AC=3.5cm,BC=2.5cm,DF=2.1cm,EF=1.5cm.求证:△ABC∽△DEF.

  86

  证明:∵AC=3.5cm,BC=2.5cm,DF=2.1cm,EF=1.5cm,

  又∵∠C=∠F,∴△ABC∽△DEF.4.我们已经学习了三角形相似的2个判定定理,类似于三角形全等的“SSS”判定方法,你能通过类比的方法猜想三角形相似的其他判定方法吗?5.你能证明你的结论吗?已知:如图,在△A′B′C′和△ABC中,

  求证:△A′B′C′∽△ABC.

  【教学说明】引导学生证明.【归纳结论】三边成比例的两个三角形相似.6.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=AC.求证:△ABC

  ABAC∽△A′B′C′.

  分析:已知两边成比例,只需证明三边成比例就可以证明两个三角形相似.可以利用勾

  87

  股定理来证明.【教学说明】用已学过的知识解题,并通过解题巩固对判定定理的理解.三、运用新知,深化理解1.见教材P82例6、P84例8.2.如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,

  并简要说明识别的根据.

  解:(1)△ADE∽△ABC,两角相等;(2)△ADE∽△ACB,两角相等;(3)△CDE∽△CAB,两角相等;(4)△EAB∽△ECD,两边成比例且夹角相等;(5)△ABD∽△ACB,两边成比例且夹角相等;(6)△ABD∽△ACB,两边成比例且夹角相等.3.在△ABC和△A′B′C′中,已知下列条件成立,判断这两个三角形是否相似,并说明理由.(1)AB=5,AC=3,∠A=45°,A′B′=10,A′C′=6,∠A′=45°;(2)∠A=38°,∠C=97°,∠A′=38°,∠B′=45°;(3)AB=2,BC=2,AC=10,A′B′=2,B′C′=1,A′C′=5.解:(1)SAS,相似;(2)AA,相似;(3)SSS,相似.4.如图,BC与DE相交于点O.问

  88

  (1)当∠B满足什么条件时,△ABC∽△ADE?(2)当AC∶AE满足什么条件时,△ABC∽△ADE?(学生小组合作交流、讨论,教师巡视引导.)

  解:(1)∵∠A=∠A,∴当∠B=∠D时,△ABC∽△ADE.(2)∵∠A=∠A,∴当AC∶AE=AB∶AD时,△ABC∽△ADE.5.如图,在等腰直角三角形ABC中,顶点为C,∠MCN=45°,试说明△BCM∽△ANC.解:∵△ACB是等腰直角三角形,∴∠A=∠B=45°.又∵∠MCN=45°,∠CNA=∠B+∠BCN=45°+∠BCN,∠MCB=∠MCN+∠NCB=45°+∠BCN.∴∠CNA=∠MCB,在△BCM和△ANC中,∠A=∠B∠CNA=∠MCB,∴△BCM∽△ANC.6.如图,已知△ABC、△DEB均为等腰直角三角形,∠ACB=∠EDB=90°,点E在边AC上,CB、ED交于点F.证明:△ABE∽△CBD.证明:∵△ABC、△DEB均为等腰直角三角形,∴∠DBE=∠CBA=45°,∴∠DBE-∠CBE=∠CBA-∠CBE.即∠ABE=∠CBD,又EBAB=2,

  BDBC∴△ABE∽△CBD.7.在平行四边形ABCD中,M,N为对角线BD上两点,连接AM交BC于E,连接EN并延

  89

  长交AD于F.试说明△AMD∽△EMB.解:∵ABCD是平行四边形,∴AD∥BC,∠ADB=∠DBC,∠MAD=∠MEB,∴△MAD∽△MEB.8.如图,已知△ABD∽△ACE,求证:△ABC∽△ADE.分析:由于△ABD∽△ACE,则∠BAD=∠CAE,因此∠BAC=∠DAE,如果再进一步证明

  ABAD=ACAE,则问题得证.证明:∵△ABD∽△ACE,∴∠BAD=∠CAE.又∵∠BAC=∠BAD+∠DAC,∠DAE=∠DAC+∠CAE,∴∠BAC=∠DAE.∵△ABD∽△ACE,∴ABAC.ADAE

  在△ABC和△ADE中,

  ∵∠BAC=∠DAE,AABAC,ADAE

  ∴△ABC∽△ADE.

  【教学说明】通过练习,使学生能够综合运用相似三角形的判定定理解决问题.

  四、师生互动、课堂小结

  先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.

  课后作业

  布置作业:教材“习题3.4”中第1、3、4题.

  教学反思

  相似三角形的判定主要介绍了四种方法,从练习的结果来看,

  不是很

  理想,绝大部分学生对定理的应用不是很熟练,特别对于"两边对应成比例且夹角相等"不能

  灵活运用,夹角也不能准确找到.我想问题的主要原因在于学生对图形的认知不深,对定理的

  理解不透,一味死记结论.不能理解每个量所表示的含义.我想在下一阶段中应培养他们认识

  图形的能力,合情推理的能力,争取这方面有所提高.

  90

  3.5相似三角形的应用

  教学目标【知识与技能】能运用相似三角形的性质解决一些简单的实际问题.【过程与方法】通过例题的教学,让学生掌握解决实际问题的方法.【情感态度】进一步检验数学的应用价值.【教学重点】运用相似三角形的性质解决简单的实际问题.【教学难点】运用相似三角形的性质解决简单的实际问题.教学过程一、情景导入,初步认知我们已经学习的相似三角形的性质有哪些?

  91

  1.相似三角形对应角相等.2.相似三角形对应边成比例.3.相似三角形的周长之比等于相似比.4.相似三角形的面积之比等于相似比的平方.5.相似三角形对应边上的高线之比、对应边上中线之比、对应角平分线之比等于相似比.思考:你能够将上面的数学问题转化为生活中的问题吗?【教学说明】复习相似三角形的性质,为本节课的教学作铺垫.二、思考探究,获取新知1.思考:如图,A,B两点分别位于一个池塘的两端.小张想测量出A,B间的距离.但由于受条件限制无法直接测量.你能帮他想出一个可以的测量办法吗?

  【教学说明】由于我们学过三角形的全等,可能有一部分学生会用全等的知识来解决,应当鼓励.并引导学生思考能否用相似的知识来解决这个问题呢.

  我们可以这样做:如图,在池塘外取一点C,使它可以直接看到A,B两点,连接并延长AC,BC,在AC的延长线上取一点D,在BC的延长线上取一点E,使ACBC=k(k为整数)测量出DE的长度后,就

  CDEC可以用相似三角形的有关知识求出A,B两点间的距离了.

  2.根据上面的分析,写出当k=2,DE=50米时,AB的长,并写出解题过程.3.在用步枪瞄准靶心时,要使眼睛O,准星A,靶心B在同一条直线上,在射击时,李明有轻微的抖动,致使准星A偏离到A′.如图所示,已知OA=0.2米,OB=50米,AA′=0.0005米,求李明射击到的点B′偏离靶心B的长度BB′.(AA′∥BB′)

  92

  解:∵AA′∥BB′,∴△OAA′∽△OBB′,

  ∵OA=0.2米,OB=50米,AA′=0.0005米∴BB′=0.125米.【教学说明】鼓励学生大胆的发言,积极讨论,教师作适当的引导、点评.

  三、运用新知,深化理解1.(1)某一时刻树的影长为8米,同一时刻身高为1.5米的人的影长为3米,则树高___米.(2)铁道的栏杆的短臂为OA=1米,长臂OB=10米,短臂端下降AC=0.6米,则长臂端上升BD=___米.

  【答案】(1)4(2)62.如图,已知零件的外径为a,要求它的厚度x,需先求出内孔的直径AB,现用一个交叉卡钳(两条尺长AC和BD相等)去量,若OA∶OC=OB∶OD=n,且量得CD=b,求厚度x.

  分析:如图,要想求厚度x,根据条件可知,首先得求出内孔直径AB.而在图中可构造出相似形,通过相似形的性质,从而求出AB的长度.

  解:∵OA∶OC=OB∶OD=n且∠AOB=∠COD;∴△AOB∽△COD.∴OA∶OC=AB∶CD=n又∵CD=b,∴AB=CD·n=nb,

  93

  3.如图,△ABC是一块锐角三角形材料,边BC=120毫米,高AD=80毫米,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?

  解:设正方形PQMN是符合要求的,△ABC的高AD与PN相交于点E.设正方形PQMN的边长为x毫米.因为PN∥BC,所以△APN∽△ABC所以AE=PN

  ADBC因此80x=x得x=48(毫米).

  80120答:这个正方形零件的边长是48毫米.4.如图是步枪在瞄准时的示意图,从眼睛到准星的距离OE为80cm,步枪上的准星宽度AB为0.2cm,目标的正面宽度CD为50cm,则眼睛到目标的距离OF是多少?

  分析:设眼睛到目标的距离为xcm,由于OE=80cm,AB=0.2cm,CD=50cm,又由于AB∥CD,

  所以利用相似三角形的性质即可求解.

  解:设眼睛到目标的距离为xcm,

  ∵OE=80cm,AB=0.2cm,CD=50cm,

  ∴BE=1AB=0.1cm,DF=1CD=25cm,

  2

  2

  ∵AB∥CD,

  ∴△OBE∽△ODF,

  解得x=20000.

  94

  因为20000cm=200m,所以眼睛到目标的距离OF是200m.【教学说明】通过练习,使学生掌握利用相似三角形解决实际问题的方法.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题3.5”中第2、3、5题.教学反思本节课学生在富有故事性和现实性的数学情景问题中学会运用两个三角形相似解决实际问题,在解决实际问题中经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力.在教学中突出了“审题,画示意图,明确数量关系解决问题”的数学建模过程,培养了学生把生活中的实际问题转化为数学问题的能力,利用图形的相似解决一些实际问题(如利用相似测量旗杆的高度).测量某些不能直接度量的物体的高度,是综合运用相似知识的良好机会,通过本节知识的学习,可以使学生综合运用三角形相似的判定和性质解决问题,发展学生的应用意识,加深学生对于相似三角形的理解和认识.一节课下来基本达到了预期目标,大部分学生都学会了建立数学模型,利用相似的判定和性质来解决实际问题.

  95

  3.6位似

  教学目标【知识与技能】1.了解图形的位似概念,会判断简单的位似图形和位似中心.2.理解位似图形的性质,能利用位似将一个图形放大或缩小,解决一些简单的实际问题.【过程与方法】采用引导、启发、合作、探究等方法,经历观察、发现、动手操作、归纳、交流等数学活动,获得知识,形成技能,发展思维,学会学习.【情感态度】使学生亲身经历位似图形的概念的形成过程和位似图形性质的探索过程,感受数学学习内容的现实性、应用性.【教学重点】图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小.【教学难点】探索位似概念、位似图形的性质的过程及利用位似准确地把一个图形通过不同的方法放大或缩小.教学过程一、情景导入,初步认知1.相似多边形的定义及判定是什么?2.相似多边形有哪些性质?3.我们已学过的图形变换有哪些?它们的性质是什么?【教学说明】分析相关知识,为本节课的教学作准备.二、思考探究,获取新知1.下图是运用幻灯机(点O表示光源)把幻灯片上的一只小狗放映到屏幕上的示意图.

  (1)这两个图形之间有什么关系?

  96

  (2)在左边小狗的头顶上和狗尾巴尖上分别取点A,B.右边小狗的头顶上和狗尾巴尖上的点A′,B′分别为点A,B的对应点.作直线AA′、BB′,你发现了什么?

  (3)分别量出线段OA、OA′、OB、OB′的长度,计算(精确到0.1):

  (4)任意在两只小狗上找一些对应点,每一对对应点与点O所连线段的比与上述的值相等吗?

  【归纳结论】一般地,如果一个图形G上的点A、B、C、…、P与另一个图形G′上的点A′、B′、C′、…、P′分别对应,且满足:

  (1)直线AA′、BB′、CC′、…、PP′都经过同一点O.

  那么图形G与图形G′是位似图形,这个点O叫作位似中心,常数k叫作位似比.2.在下图中,线段AB与A′B′成位似图形,O是位似中心,你能证明AB∥A′B′吗?

  3.由此,你能得到什么结论?【归纳结论】两个图形位似,则这两个图形不仅相似,而且对应点的连线相交于一点,对应边互相平行.利用位似,可以把一个图形进行放大或缩小.4.如图,在平面直角坐标系中,已知△AOB的顶点坐标分别为A(2,4)、O(0,0)、B(6,0).

  (1)将各个顶点坐标分别缩小为原来的一半.所得到的图形与原图形是位似图形吗?(2)将各个顶点坐标分别扩大为原来的2倍,所得到的图形与原图形是位似图形吗?【教学说明】启发学生自己画,引导学生利用位似图形的性质画位似图形.组织学生讨论位似中心的位置有几种情况并画出图形.

  97

  【归纳总结】一个多边形的顶点坐标分别扩大或缩小相同的倍数,所得到的图形与原图形是以坐标原点为位似中心的位似图形.

  在平面直角坐标系中,如果位似图形以坐标原点为位似中心,位似比为k,那么位似图形对应点的坐标的比等于k或-k.

  画位似图形的方法:方法:1.确定位似中心;2.找对应点;3.连线;4.下结论.三、运用新知,深化理解1.见教材P99例题.2.下列说法中正确的是()A.位似图形可以通过平移而相互得到B.位似图形的对应边平行且相等C.位似图形的位似中心不只有一个D.位似中心到对应点的距离之比都相等【答案】D3.如图,五边形ABCDE和五边形A1B1C1D1E1是位似图形,且PA1=2PA,则AB∶A1B1等于

  3()

  【答案】B4.如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为()

  A.(-a,-2b)C.(-2a,-2b)【答案】C

  B.(-2a,-b)D.(-2b,-2a)

  98

  5.如图,火焰的光线穿过小孔O,在竖直的屏幕上形成倒立的实像,像的长度BD=2cm,OA=60cm,OB=15cm,则火焰的长度为______.

  【答案】8cm6.如图,五边形ABCDE与五边形A′B′C′D′E′是位似图形,且位似比为2.若五边形ABCDE的面积为17cm2,周长为20cm,那么五边形A′B′C′D′E′的面积为____,周长为_____.

  【答案】17cm24

  10cm

  7.如图,A′B′∥AB,B′C′∥BC,且OA′∶A′A=4∶3,则△ABC与____是位似图形,

  位似比为_____;△OAB与_____是位似图形,位似比为_____.

  【答案】△A′B′C′7∶4△OA′B′7∶48.如图:三角形ABC,请你在网格中画出把三角形ABC以C为位似中心放大2倍的三角形.

  【教学说明】通过例题、练习,让学生总结解决问题的方法,以培养学生良好的学习习惯.

  99

  四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题3.6”中第1、3、4题.教学反思在学习图形的位似概念过程中,让学生用类比的方法认识事物总是互相联系的,温故而知新.而通过“位似图形的性质”的探索,让学生认识事物的结论必须通过大胆猜测、判断和归纳.在分析理解位似图形性质时,加强师生的双边活动,提高学生分析问题、解决问题的能力.

  4.1正弦和余弦第1课时正弦的概念和正弦值的求法

  教学目标【知识与技能】1.使学生理解锐角正弦的定义.2.会求直三角形中锐角的正弦值.3.会用计算器计算任意一个锐角的正弦值.【过程与方法】使学生经历探索正弦定义的过程.逐步培养学生观察、比较、分析、归纳的能力.【情感态度】通过探索、发现,培养学生独立思考、勇于创新的精神和良好的学习习惯.【教学重点】根据定义求锐角的正弦值.【教学难点】探索“在直角三角形中,任意锐角的对边与斜边的比值是一个常数”的过程.

  教学过程一、情景导入,初步认知1.下图是上海东方明珠电视塔的远景图,你能想办法求出旗杆的高度吗?

  100

  2.学习了本章内容你就能简捷地解决这类问题,本章将介绍锐角三角形函数,它们的本事可大了,可以用来解决实际问题,今天我们来学习第一节“正弦和余弦”.

  【教学说明】通过实际问题,创设情境,引发学生产生认知盲点,激发学生学习的兴趣和探究的欲望,有利于引导学生进行数学思考.

  二、思考探究,获取新知1.画一个直角三角形,其中一个锐角为65°,量出65°角的对边长度和斜边长度,计算:65°角的对边/斜边=_______=_______.(1)与同桌和邻桌的同学交流,看看你们计算出的比值是否相等.(2)根据计算的结果,你能得到什么结论?(3)这个结论是正确的吗?(4)若把65°角换成任意一个锐角α,则这个角的对边与斜边的比值是否也是一个常数呢?2.如图,△ABC和△DEF都是直角三角形,其中∠A=∠D=α、∠C=∠F=90°,则BC/AB=EF/DE成立吗?请说出你的证明过程.

  通过我们的证明,这就说明,在有一个锐角等于α的所有直角三角形中,角α的对边与斜边的比值是一个常数,与直角三角形的大小无关.

  【归纳结论】在直角三角形中,我们把锐角α的对边与斜边的比叫作角α的正弦.记作sinα.

  3.计算sin30°、sin45°、sin60°的值.【教学说明】引导学生利用“30°的角所对的直角边等于斜边的一半”和“勾股定理”进行计算.【归纳结论】sin30°=1/2;sin45°=2/2;sin60°=3/2.

  101

  4.我们已经知道了三个特殊角(30°、45°、60°)的正弦值,而对于一般锐角α的正弦值,我们应该如何来计算呢?

  5.利用计算器计算sin50°的值.在计算器上依次按键sin50,则屏幕上显示的就是sin50°的值,6.如果已知正弦值,我们可以利用计算器求出它对应的锐角的度数.例如:已知sinα=0.7071,求α的度数.我们可以依次按键2ndFsin0.7071,则屏幕上显示的就是α的度数.【教学说明】学生先了解计算器各按键的功能,为利用计算器正确求锐角三角函数值打下基础.三、运用新知,深化理解1.见教材P110例1、P113例2.2.在△ABC中,∠A=45°,∠B=60°,a=2,则b等于()A.6B.2C.3D.26【答案】A3.计算sin36°=_____.(保留四个有效数字).【答案】0.58784.若sinA=0.1234sinB=0.2135,则A_____B(填<、>、=)解析:根据sin30°=1/2,sin45°=2/2,sin60°=3/2,我们可以发现锐角的度数越大,正弦值越大.【答案】<5.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,(1)求∠A的正弦sinA.(2)求∠B的正弦sinB.分析:先利用勾股定理算出AB的长,再利用正弦的计算方法进行计算.解:(1)∠A的对边BC=3,斜边AB=5,于是sinA=3/5.(2)∠B的对边是AC,因此sinB=AC/AB=4/5.6.在Rt△ABC中,如果各边长度都扩大3倍,则锐角A的正弦值()A.不变化B.扩大3倍C.缩小1/3D.缩小3倍分析:因为各边值都扩大3倍,所以锐角A的对边与斜边的比值不变.【答案】A

  102

  7.已知:在△ABC中,∠B=45°,∠C=75°,AC=2,求BC的长.分析:作△ABC的一条高,把原三角形转化成直角三角形,并注意保留原三角形中的特殊角.

  8.求sin63°52′41″的值.(精确到0.0001)解:先用如下方法将角度单位状态设定为“度”:

  所以sin63°52′41″≈0.8979.【教学说明】收集学生在课堂上学习的时候出现的易错点和难点,引导学生查找、分析原因,并且有针对性补充练习,促进提高,由基础慢慢进入到提高,照顾每个层次的学生的能力,提高学生学习数学的积极性和主动性.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题4.1”中第3、4题.教学反思本节课重难点就是对比值的理解,可以从以下几方面着手研究:(1)讨论角的任意性(从特殊到一般),(2)运用相似三角形性质,让学生领悟到:在直角三角形中,对于固定角,无论直角三角形大小怎么样改变,都影响不到其对边与斜边的比值.

  103

  第2课时余弦的概念和余弦值的求法

  教学目标【知识与技能】1.使学生理解锐角余弦的定义.2.会求直三角形中锐角的余弦值.3.会用计算器求一般锐角的余弦值.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养

  学生会观察、比较、分析、概括等逻辑思维能力.【情感态度】引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.【教学重点】求直三角形中锐角的余弦值.【教学难点】求直三角形中锐角的余弦值.

  教学过程一、情景导入,初步认知1.什么叫作正弦?2.sin30°、sin45°、sin60°的值分别是多少?【教学说明】对上节课的内容进行复习.二、思考探究,获取新知

  1.如图,△ABC和△DEF都是直角三角形,其中∠A=∠D=α,∠C=∠F=90°,则

  成

  立吗?为什么?

  由此可得,在有一个锐角等于α的所有直角三角形中,角α的邻边与斜边的比值是一个常数,与直角三角形的大小无关.

  【归纳结论】在直角三角形中,我们把锐角α的邻边与斜边的比叫作角α的余弦.记作

  104

  cosα.即cosα=角α的邻边/斜边.从上述探究和证明过程看出,对于任意锐角α,有cosα=sin(90°-α),从而有:sinα=cos(90°-α).2.计算cos30°,cos45°,cos60°的值.

  3.我们已经知道了三个特殊角(30°、45°、60°)的余弦值,而对于一般锐角α的余弦值,我们可以用计算器来计算.

  例如,求cos50°角的余弦值,我们可以在计算器上依次按键的就是cos50°的值.

  4.如果已知余弦值,我们可以利用计算器求出它对应的锐角的度数.

  ,则屏幕上显示

  例如:已知cosα=0.8661,求α的度数.我们可以依次按键

  ,

  则屏幕上显示的就是α的度数.

  【教学说明】学生先了解计算器各按键的功能,为利用计算器正确求锐角三角函数值打

  下了基础.

  三、运用新知,深化理解

  1.见教材P115例4.

  2.下列说法正确的个数有()

  (1)对于任意锐角α,都有0<sinα<1和0<cosα<1

  (2)对于任意锐角α1,α2,如果α1<α2,那么cosα1<cosα2

  (3)如果sinα1<sinα2,那么锐角α1<锐角α2

  (4)对于任意锐角α,都有sinα=cos(90°-α)

  A.1个B.2个C.3个D.4个

  【答案】C

  3.在△ABC中,∠C=90°,若2AC=2AB,求∠A的度数及cosB的值.

  分析:利用三角形中边的比值关系,结合三角函数的定义解决问题,注意对特殊角三角

  函数值的逆向应用.

  105

  4.计算:(1)|-3|-2sin60°+sin45°·cos45°;(2)cos260°+cos245°+2sin30°·sin45°.

  5.用计算器求值(保留四位小数):(1)sin38°19′;(2)cos78°43′16″.解:(1)按MODE,出现:DEG,按sin,38,“.”,19,“.”,=,显示:0.620007287,则结果为0.6200.(2)按MODE,出现:DEG,按cos,78,“.”,43,“.”,16,“.”=,显示:0.195584815,则结果为0.1956.6.若sin40°=cosα,求α的度数.解:∵sin40°=cosα,∴α=90°-40°=50°.7.在Rt△ABC中,∠C=90°,sinB=3/5,求BC/AB的值.解:∵sin2B+cos2B=1,∠B为Rt△ABC的内角,∴cosB=1sin2B=4/5,即cosB=BC/AB=4/5.

  106

  8.正方形网格中,∠AOB如图放置,求cos∠AOB的值.

  解:如图,在OA上取一点E,过点E作EF⊥OB,则EF=2,OF=1,由勾股定理得,OE=5.

  【教学说明】引导学生分析问题,作出辅助线,再写出解答过程.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题4.1”中第6、7、8题.教学反思教学中,我一直比较关注学生的情感态度,对那些积极动脑,热情参与的同学都给予鼓励和表扬,促使学生的情感和兴趣始终保持最佳状态,从而保证施教活动的有效性.在学生“心求通而未得,口欲言而不能”的状态下,适时导出概念,自然而合理,符合新课标的理念.若干年后,或许对余弦概念的表达式已经彻底忘记,但对探索概念的过程,创新意识,数学思想,将深深铭刻在他们的脑海中.

  第3课时正弦和余弦

  教学目标【知识与技能】1.进一步认识正弦和余弦;2.正弦和余弦的综合应用.【过程与方法】通过合作交流,能够根据直角三角形中边角关系,进行简单的计算.【情感态度】经过探索,引导、培养学生观察,分析、发现问题的能力.【教学重点】直角三角形中锐角的正弦、余弦的综合应用.

  107

  【教学难点】直角三角形中锐角的正弦、余弦的综合应用.教学过程一、情景导入,初步认知1.正弦和余弦的定义是什么?2.正弦和余弦之间有什么关系?【教学说明】复习有关知识,为本节课的教学作准备.二、思考探究,获取新知一个小孩荡秋千,秋千链子的长度为2.5m,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01m)

  分析:引导学生自己根据题意画出示意图,培养学生把实际问题转化为数学问题的能力.解:根据题意(如图)可知,∠BOD=60°,OB=OA=OD=2.5m,∠AOD=1/2×60°=30°,∴OC=OD·cos30°=2.5×3≈2.165(m).

  2∴AC=2.5-2.165≈0.34(m).所以,最高位置与最低位置的高度约为0.34m.【教学说明】通过例题的教学,使学生掌握正弦、余弦在具体问题中的应用.三、运用新知,深化理解1.求下列式子的值.

  108

  2.在Rt△ABC中,∠C=90°,BC=6,sinA=3/5,求cosA.

  3.如图,在Rt△ABC中,∠C=90°,cosA=12/13,AC=10,AB等于多少?sinB呢?

  4.已知:如图,CD是Rt△ABC的斜边AB上的高,求证:BC2=AB·BD.(用正弦、余弦函数的定义证明)

  解:在Rt△ABC中,sinA=BC/AB,在Rt△BCD中,cosB=BD/BC根据上题中的结论,可知:

  109

  在Rt△ABC中,sinA=cosB,BC/AB=BD/BC即:BC2=AB·BD.【教学说明】使学生掌握正弦、余弦的综合应用.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题4.1”中第9、10题.教学反思传统教学存在弊端,同时也具有不合理的元素,因此,我的课堂教学特别强调通过情景引导,使学生学会应用知识,通过探究,将学生引向知识深处,在整个过程中体现了教师的主导作用,学生的主体地位.在教学过程中,如何保证每位学生都得到发展,如何给予每个学生以发展平台,这是每位教师在课堂教学中必须做到的.

  4.2正切

  教学目标【知识与技能】使学生了解正切的概念,能够正确地用tanA表示直角三角形(其中一个锐角为∠A)中两

  直角边的比,熟记30°、45°、60°角的各个三角函数值,会计算含有这三个特殊锐角的三角函数值的式子.

  【过程与方法】逐步培养学生观察、比较、分析、综合、概括等逻辑思维能力.【情感态度】培养学生独立思考、勇于创新的精神.【教学重点】了解正切的概念,熟记特殊角的正切值.【教学难点】正切的应用.教学过程一、情景导入,初步认知1.如图:在Rt△ABC中,∠C=90°,sinA=________;cosA=________.

  110

  2.当直角三角形的一个锐角的大小确定时,其对边与邻边比值也是唯一确定的吗?【教学说明】巩固复习,同时引入新课.二、思考探究,获取新知1.如图,△ABC和△DEF都是直角三角形,其中∠A=∠D=α,∠C=∠F=90°,则BC/AC=EF/DF成立吗?为什么?

  由此可得,在有一个锐角等于α的所有直角三角形中,角α的对边与邻边的比值是一个常数,与直角三角形的大小无关.

  【归纳结论】在直角三角形中,我们把锐角α的对边与邻边的比叫作角α的正切.记作

  tanα,即:2.求tan30°、tan45°、tan60°的值.【归纳结论】tan30°=33、tan45°=1、tan60°=3.3.30°、45°、60°的正弦、余弦、正切值分别是多少?【归纳结论】

  【教学说明】通过表格的形式进行归纳,可使学生熟记三角函数值.4.如何用计算器求一般锐角的正切值?

  例如:求25°角的正切值,可以在计算器上依次按键

  ,则屏幕上显示的

  0.4663…就是25°角的正切值.

  5.如果已知正切值,我们可以利用计算器求出它对应的锐角的度数.

  例如:已知tanα=0.8391,求α的度数.我们可以依次按键

  ,

  111

  则屏幕上显示的就是α的度数.【教学说明】学生先了解计算器各按键的功能,为利用计算器正确求锐角三角函数值打

  下基础.6.什么是锐角三角函数?【归纳结论】我们把锐角α的正弦、余弦、正切统称为角α的锐角三角函数.三、运用新知,深化理解1.求tan70°45′的值.(精确到0.0001)解:在角度单位状态为“度”的情况下(屏幕显示出D),按下列顺序依次按键:

  显示结果为2.863560231.所以tan70°45′≈2.8636.2.(1)求下列三角函数值:sin60°,cos70°,tan45°,sin29.12°,cos37°42′6″,tan18°31′.(2)计算下列各式:sin25°+cos65°;sin36°·cos72°;tan56°·tan34°解:略3.计算:

  4.在△ABC中,∠C=90°,AB=8,cosA=3/4,求BC的长.分析:首先利用余弦函数的定义求得AC的长,然后利用勾股定理即可求得BC的长.

  5.在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:

  序号)

  ,其中正确的结论是______.(只需填上正确结论的

  112

  分析:先根据题意画出图形,再由直角三角形的性质求出各角的度数,由特殊角的三角函数值即可得出结论.

  ∵在Rt△ABC中,∠C=90°,AB=2BC,∴sinA=BC/AB=1/2,故①错误;∴∠A=30°,∴∠B=60°,∴cosB=cos60°=1/2,故②正确;∵∠A=30°,

  ∵∠B=60°,∴tanB=tan60°=3,故④正确.【答案】②③④6.如图,在Rt△ABC中,∠C=90°,∠A=35°,AC=6,求BC,AB的长.(精确到0.001)

  解:因为BC/AC=tanA=tan35°,由计算器求得tan35°≈0.7002,所以BC=AC·tanA≈6×0.7002≈4.201.又AC/AB=cosA=cos35°,由计算器求得cos35°≈0.8192,所以AB=AC/cosA≈7.324.7.如图,工件上有一V型槽,测得它的上口宽20mm,深19.2mm.求V型角(∠ACB)的大小(结果精确到度).

  解:tan∠ACD=AD/CD=10/19.2≈0.5208,∴∠ACD≈27.51°.

  113

  ∴∠ACB=2∠ACD≈2×27.51≈55°.∴V型角的大小约为55°.【教学说明】教师要强调,让每位学生必须动手操作,达到熟练的程度.从而提高学生动手操作能力,巩固所学知识.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题4.2”中第1、2、3题.教学反思三角尺是学生非常熟悉的学习用具,在这节课的教学中,教师应大胆地鼓励学生用所学的数学知识,如“直角三角形中,30°角所对的边等于斜边的一半”的特性,熟记30°、45°、60°角的三角函数值.另外通过小组合作交流形式,让学生积极参与数学活动,对数学产生好奇心,培养学生独立思考问题的习惯,并在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.给学生留充分的时间,采取多种形式让学生记住特殊角的三角函数值.根式化简与负指数的运算易出错.可能会引出新的问题,因此使他们认识到对科学技术的研究将是永无止境的。

  114

  4.3解直角三角形教学

  教学目标

  【知识与技能】

  使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互

  余及锐角三角函数解直角三角形.

  【过程与方法】

  通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐

  步培养学生分析问题、解决问题的能力.

  【情感态度】

  渗透数形结合的数学思想,培养学生良好的学习习惯.

  【教学重点】

  直角三角形的解法.

  【教学难点】

  三角函数在解直角三角形中的灵活运用.

  教学过程

  一、情景导入,初步认知

  1.什么是锐角三角函数?

  2.你知道哪些特殊的锐角三角函数值?

  【教学说明】通过复习,使学生便于应用.

  二、思考探究,获取新知

  1.在三角形中共有几个元素?

  2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?

  (1)边、角之间的关系:

  sinA=∠A的对边/斜边

  cosA=∠A的邻边/斜边

  tanA=∠A的对边/∠A的邻边

  (2)三边之间的关系:

  a2+b2=c2(勾股定理)

  (3)锐角之间的关系:

  ∠A+∠B=90°.

  115

  3.做一做:在直角三角形ABC中,已知两边,你能求出这个直角三角形中其它的元素吗?4.做一做:在直角三角形ABC中,已知一角一边,你能求出这个直角三角形中其它的元素吗?5.想一想:在直角三角形ABC中,已知两角,你能求出这个直角三角形中其它的元素吗?6.如图,在Rt△ABC中,∠C=90°,∠A=30°,a=5.求∠B、b、c.

  解:∵∠B=90°-∠A=60°,又∵tanB=b/a,∴b=a·tanB=5·tan60°=53.∵sinA=a/c,∴c=a/sinA=5/sin30°=10.【归纳结论】像这样,在直角三角形中,利用已知元素求其余未知元素的过程,叫作解直角三角形.7.在解直角三角形中,两个已知元素中至少有一条边.【教学说明】我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.三、运用新知,深化理解1.见教材P122例2.2.已知在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,c=83,∠A=60°,求∠B、a、b.解:a=csin60°=83·3/2=12,b=ccos60°=83·1/2=43,∠B=30°.3.已知在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,a=36,∠A=30°,求∠B、b、c.

  116

  解:∠B=90°-30°=60°,b=atanB=36·3=92,

  .4.已知在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,c=6-2,a=3-1,求∠A、∠B、b.

  5.已知在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,a=6,b=23,求∠A、∠B、c.

  解:由于tanA=ab,所以

  则∠A=60°,∠B=90°-60°=30°,且有c=2b=2×23=43.6.在直角三角形ABC中,锐角A为30°,锐角B的平分线BD的长为8cm,求这个三角形的三条边的长.解:由已知可得△BCD是含30°的直角三角形,所以CD=1/2BD=1/2×8=4(cm),△ADB是等腰三角形,所以AD=BD=8(cm),则有AC=8+4=12(cm),BC=ACcot60°=12×33=43(cm),

  117

  AB=(43)2+122=48+144=83(cm).7.如图,在三角形纸片ABC中,∠C=90°,AC=6,折叠该纸片,使点C落在AB边上的D点处,折痕BE与AC交于点E,若AD=BD,则折痕BE的长为多少?

  分析:先根据图形翻折变换的性质得出BC=BD,∠BDE=∠C=90°,再根据AD=BD可知AB=2BC,AE=BE,故∠A=30°,由锐角三角函数的定义可求出BC的长,设BE=x,则CE=6-x,在Rt△BCE中根据勾股定理即可得出BE的长.

  解:∵△BDE是由△BCE翻折而成,∴BC=BD,∠BDE=∠C=90°,∵AD=BD,∴AB=2BC,AE=BE,∴∠A=30°,在Rt△ABC中,∵AC=6,

  ,设BE=x,则CE=6-x,在Rt△BCE中,∵BC=23,BE=x,CE=6-x,BE2=CE2+BC2,∴x2=(6-x)2+(23)2,解得x=4.即BE=4.【教学说明】解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了针对各种条件的练习,培养学生熟练解直角三角形和运算的能力.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题4.3”中第1、3、4题.教学反思解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因

  118

  此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.

  第1课时俯角和仰角问题

  教学目标【知识与技能】比较熟练地应用解直角三角形的知识解决与仰角、俯角有关的实际问题.【过程与方法】通过学习进一步掌握解直角三角形的方法.【情感态度】培养学生把实际问题转化为数学问题的能力.【教学重点】应用解直角三角形的知识解决与仰角、俯角有关的实际问题.【教学难点】选用恰当的直角三角形,分析解题思路.

  一、情景导入,初步认知海中有一个小岛A,该岛四周10海里内有暗礁.今有货轮由西向东航行,开始在A岛南偏西55°的B处,往东行驶20海里后,到达该岛的南偏西25°的C处,之后,货轮继续往东航行,你认为货轮继续向东航行途中会有触礁的危险吗?你是如何想的?与同伴进行交流.【教学说明】经历探索船是否有触礁危险的过程,进一步体会三角函数在解决实际问题中的应用.二、思考探究,获取新知1.某探险者某天到达如图所示的点A处,他准备估算出离他的目的地——海拔为3500m的山峰顶点B处的水平距离.你能帮他想出一个可行的办法吗?

  分析:如图,BD表示点B的海拔,AE表示点A的海拔,AC⊥BD,垂足为点C.先测量出海拔AE,再测出仰角∠BAC,然后用锐角三角函数的知识就可以求出A、B之间的水平距离AC.

  119

  【归纳结论】当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫作仰角,在水平线下方的角叫作俯角.

篇四:湘教版九年级上册数学教材分析

  湘教版九年级上册数学教学计划

  一、指导思想根据新课程标准的要求,教育学生掌握与基本技能,培养学

  生的逻辑思维、运算能力、空间观念、和解决简单实际问题的能力。使学生进一步学会正确合理地进行运算、进一步学会观察、分析、综合、抽象、概括、会用简单归纳演绎、类比进行简单的推理。使学生懂得数学来源于实践反过来作用于实践。提高学生学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度,顽强学习的毅力和独立思考、探索的思想。培养学生应用数学知识解决问题的能力。全面提高教育教学质量,这明年的毕业工作打下良好的基础。二、学生基本分析

  总体来看,学生基较差,现有学生31名,上期统考,全镇排名落后。在学生所学知识掌握程度上,整个年级开始出现两极分化了。对少数几个优生来说,能够透彻理解知识,知识间的内在联系也较为清楚。对大部分后进生来说,简单的基础知识也不能掌握。成绩差,学生仍然缺少大量的推理题训练。推理的思考方法与写法上均存在着一定的困难,对几何有畏缩情绪,相关知识学得不透彻。在学习能力上,学生课外主动获得知识的能力较差甚至几乎为零。学生的逻辑思维能力、计算能力、需得到加强,

  以提升学生的’整体成绩。应在适当的时候补充课外知识,拓展学生的知识面,提升学生素质。学生的学习习惯养成还不理想,预习习惯,进行的习惯,主动纠错的习惯,大多数学生还没有养成。三、本学期的教学内容共五章

  第一章一元二次方程这一章是中学数学的主要内容之一,在初中代数中占有非常重要的地位,本意知识的学习,在全部代数知识的学习中起着承上启下的作用,它既是对已学过的知识的巩固和加深,又是为今后学习三角方程、二次函数等内容奠定基础。

  第二章命题与证明本章重点是引发学生证明的意识,初步体验严格证明的格式,以及命题的有关知识。难点是分析命题的条件、结论、及如何进行简单的证明。

  第三章图形的相似章共分四部分,相似图形及比例线段,相似三角形的性质及判定,相似多边形的性质及判定,位似变换及位似图形,相似三角形是研究相似形最基本的图形,是在全等三角的基础上的拓展和发展,全等形是相似形的特殊情况,研究相似形比研究全等形更具有一般性,成比例线段是相似形的本质,证明有关的线段成比例也是本章很重要的数学思想方法。

  第四章锐角三角函数本章从实例出发,引入了锐角的正弦、余弦和正切的定义,然后重点介绍直角三角形及其应用。锐角三角函数的概念是以后学习一般三角函数的基础,也是觖直角三角形的基础,锐角三角函数和觖直角三角形是学习立体几何、解析

  几何以及物理中的力学知识等不可缺少的工具,因此,本章是初中数学中的一个重要的基础内容,也是培养学生分析问题和解决问题能力的重要内容之一。

  第五章概率的计算本章重点是让学生探索随机事件某种情况发生的频率、让学生掌握正确判断什么是必然事件和不可能事件以及可能事件发生的概率公式,并能用公式计算有关简单事件发生的概率。四、提高质量的措施

  1、认真学习钻研新课标,掌握教材;2、认真备课、争取充分掌握学生动态;3、认真上好每一堂课;4、落实每一堂课后辅助,查漏补缺;5、积极与其他老师沟通,加强教研、教改,提高教学水平;6、经常听取学生良好的合理化建议;7、以“两头带中间”;8、深化两极生的辅导。

篇五:湘教版九年级上册数学教材分析

  word

  一元二次方程

  一、学情分析:知识技能基础:学生在七年级已学习了一元一次方程,掌握了一元一次方程的基本特征及其解法。对于整式的化简学生也已掌握。活动经验基础:学生已接触了从实际问题抽象出数学模型,明确了元与次的意义,获得了根据方程的特点概括出其概念的一些经验,也具备了一定的交流合作学习的能力二、教材分析:教材在本节内容主要是要理解一元二次方程的概念及其二次项、一次项、常数项,了解一元二次方程的一般形式,并会将一元二次方程化成一般形式。一元二次方程是解决实际问题的一种数学模型,是初中阶段学习的重点内容,也是学习二次函数的基础,起着承上启下的作用。三、教学目标:知识目标:通过对本节课的教学,使学生充分了解一元二次方程的概念;正确掌握一元二次方程的一般形式.并会将一元二次方程化为一般形式。能力目标:经历抽象一元二次方程概念的过程,培养学生分析问题、解决问题的能力以及对数学概念理解的完整性和深刻性,帮助学生掌握初步的研究问题的方法.情感目标:培养学生主动参与,合作交流的意识。帮助学生树立转化的思想和严谨的科学态度;培养学生用数学的意识.四、教学重点和难点重点:一元二次方程的概念和一般形式难点:正确理解和掌握一般形式中的a≠0,“项”和“系数”,化一元二次方程为一般形式.五、教学方法启发式、类比法,以教师为主导、学生为主体、问题为主线,问题情景---数学模型-----概念归纳,自主探索、合作交流六、教学媒体:大屏幕,实物投影仪

  1/4

  word

  七、教学过程

  本节课设计了六个教学环节:第一环节:创设情境,引入新课;第二环节:自主探究,寻求

  新知;第三环节:练习巩固,形成技能;第四环节:课堂检测,提升能力;第五环节:感

  悟与收获;第六环节:布置作业。

  第一环节:创设情景,引入新课

  一、旧知回顾:

  1、你还记得什么叫方程?什么叫方程的解吗?

  2、什么是一元一次方程?它的一般形式是怎样的?你能举一个一元一次方程的实例吗?

  3、我们知道了利用一元一次方程可以解决生活中的一些实际问题,你还记得利用一元一次

  方程解决实际问题的步骤吗?

  二、问题情境

  活动内容:通过课本二个具体的问题,引导学生得到二个方程。

  问题(1)学生阅读课本P2页问题一,并且列出相应的方程。

  2

  352x9000

  4x2140x3250

  问题(2)学生阅读课本P2页问题二,并且列出相应的方程。

  0.01t22t0

  活动目的:从学生熟悉的二个实际问题入手,引导学生回顾列方程解应用题的一般步骤,经

  历探求思路、建立方程的过程,使学生进一步体会方程是刻画现实世界的有效数学模型,并

  从中激发学生的学习兴趣。

  第二环节:自主探究,寻求新知

  活动内容:概括一元二次方程的概念

  仔细观察,,刚才得到的两个方程与以前学过的一元一次方程有什么相同点和不同点?

  4x2140x3250

  0.01t22t0

  2x150

  5x170

  问题:类比一元一次方程的概念给出一元二次方程的概念.

  2/4

  word

  只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.

  一元二次方程的一般形式

  ax2bxc0(a、b、c是常数,且a0)

  指出二次项系数,一次项系数,常数项

  (1)x210x9000

  (3)2x2-15=0

  上述一元二次方程有哪些相同点和不同点?

  (2) 5x2+10x2.20(4)x23x0

  (1)强调三个特征:整式方程;只含一个未知数;未知数的最高次数是2且其系数不为0。

  (2)几种不同的表示形式:①ax2+bx+c=0(a≠0,b≠0,c≠0)

  ②ax2+bx=0(a≠0,b≠0,c=0)

  ③ax2+c=0(a≠0,b=0,c≠0)

  ④ax2=0(a≠0,b=0,c=0)

  (3)相关概念:一元二次方程的一般形式:ax2+bx+c=0(a,b,c为常数,a不等于0)

  一元二次方程的二次项、一次项、常数项分别为:ax2、bx、c

  二次项系数为:a

  一次项系数为:b

  对学生所说的各个情况进行总结,尤其注意学生容易漏掉的二次项系数不为0的要点。

  活动目的:通过观察分析四个方程的特点,让学生在已经学习的一元一次方程的基础上尝试

  概括一元二次方程的定义,理解一元二次方程的基本特征及其相关概念,从而培养学生的观

  察能力、分析概括能力,养成独立思考的良好的行为习惯。

  第三环节:练习巩固,形成技能

  活动内容:

  1、判一判,下列方程哪些是一元二次方程?

  (1)1 x20 (3) 2x2-3x-10(5) (x3)2(x3)2

  (2)2(x2-1)=3y

  (4)1-2=0x2x

  (6)9x2=5-4x

  2.一元二次方程的二次项系数、一次项系数和常数项.

  (1)x210x9000

  (2)5x210x2.20

  (3)2x2150(4)x23x0

  3/4

  word

  3、把下面的方程化为一般形式,并写出它的二次项系数、一次项系数和常数项.

  3x(x1)5(x2)

  第四环节:课堂检测,提升能力活动内容:完成课本P4页练习题1、2、3题活动目的:继续巩固一元二次方程的定义。通过部分问题的分组讨论,培养学生主动参与、合作交流的意识;让学生经历独立克服困难和运用知识解决问题的成功体验,提高学习数学的自信心。第五环节:感悟与收获活动内容:师生相互交流,本节课学了哪些知识?有什么体会?在本节课中,对自己及其他同学们的学习表现满意吗?活动目的:教师鼓励学生结合本节课的学习,谈自己的收获与感想,教师适当地给予鼓励,培养学生的语言表达能力、概括能力及善于归纳总结良好的学习习惯。第六环节:布置作业课本习题四、教学反思本节课中,一元二次方程的概括过程及小组合作交流的过程,过学生提供展示自己的机会,让学生交流,更有利于教师及时发现学生分析和解决问题的能力,以及思维的误区,课堂上要把激发学生学习热情和获得学习能力放在首位。

  4/4

篇六:湘教版九年级上册数学教材分析

  反比例函数11反比例函数教学目标知识与技能理解反比例函数的概念根据实际问题能列出反比例函数关系式过程与方法经历从实际问题抽象出反比例函数的探索过程发展学生的抽象思维能力情感态度培养观察推理分析能力体会由实际问题转化为数学模型认识反比例函数的应用价值教学重点理解反比例函数的概念能根据已知条件写出函数解析式教学难点能根据实际问题中的条件确定反比例函数的解析式体会函数的模型思想教学过程一情景导入初步认知1

  第1章反比例函数1.1反比例函数

  教学目标

  【知识与技能】理解反比例函数的概念,根据实际问题能列出反比例函数关系式.【过程与方法】经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.【情感态度】培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.【教学重点】理解反比例函数的概念,能根据已知条件写出函数解析式.【教学难点】能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.

  教学过程

  一、情景导入,初步认知1.复习小学已学过的反比例关系,例如:(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?【教学说明】对相关知识的复习,为本节课的学习打下基础.二、思考探究,获取新知探究1:反比例函数的概念(1)一群选手在进行全程为3000米的赛马比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.(2)利用(1)的关系式完成下表:

  (3)随着时间t的变化,平均速度v发生了怎样的变化?

  (4)平均速度v是所用时间t的函数吗?为什么?(5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?【归纳结论】一般地,如果两个变量x,y之间可以表示成y=

  k(k为常数且k≠0)的形式,x

  那么称y是x的反比例函数.其中x是自变量,常数k称为反比例函数的比例系数.【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t,其中自变量t可以取哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t代表的是时间,且时间不能为负数,所有t的取值范围为t>0.【教学说明】教师组织学生讨论,提问学生,师生互动.三、运用新知,深化理解1.见教材P3例题.2.下列函数关系中,哪些是反比例函数?(1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系;(2)压强p一定时,压力F与受力面积S的关系;(3)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系.(4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关系式.分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=数,k≠0).所以此题必须先写出函数解析式,后解答.解:(1)a=12/h,是反比例函数;(2)F=pS,是正比例函数;(3)F=W/s,是反比例函数;(4)y=m/x,是反比例函数.3.当m为何值时,函数y=

  4x

  2m-2

  k(k是常x

  是反比例函数,并求出其函数解析式.分析:由反比例函数

  的定义易求出m的值.解:由反比例函数的定义可知:2m-2=1,m=3/2.所以反比例函数的

  解析式为y=

  4.x

  4.当质量一定时,二氧化碳的体积V与密度ρ成反比例.且V=5m3时,ρ=1.98kg/m3(1)求p与V的函数关系式,并指出自变量的取值范围.(2)求V=9m3时,二氧化碳的密度.解:略5.已知y=y1+y2,y1与x成正比例,y2与x2成反比例,且x=2与x=3时,y的值都等于19.求y与x间的函数关系式.分析:y1与x成正比例,则y1=k1x,y2与x2成反比例,则y2=k2x2,又由y=y1+y2,可知,y=k1x+k2x2,只要求出k1和k2即可求出y与x间的函数关系式.解:因为y1与x成正比例,所以y1=k1x;因为y2与x2成反比例,所以y2=+y2,所以y=k1x+

  k2,当x=2与x=3时,y的值都等于19.x2k2,而y=y1x2

  【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.

  课后作业

  布置作业:教材“习题1.1”中第1、3、5题.

  教学反思

  学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.

  1.2反比例函数的图象与性质第1课时反比例函数的图象与性质(1)

  教学目标

  【知识与技能】1.会用描点法画反比例函数图象;2.理解反比例函数的性质.【过程与方法】观察、比较、合作、交流、探索.【情感态度】通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质.【教学重点】画反比例函数的图象,理解反比例函数的性质.【教学难点】理解反比例函数的性质,并能灵活应用.

  教学过程

  一、情景导入,初步认知你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢?【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质.二、思考探究,获取新知探究1:反比例函数图象的画法画出反比例函数y=数图象一般分为列表、描点、连线三个步骤.(1)列表:取自变量x的哪些值?

  6的图象.分析∶画出函x

  x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右均匀,对称地取值.

  (2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(-6,-1)、(-3,-2)、(-2,-3)等.(3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.

  思考:(1)观察上图,y轴右边的各点,当横坐标x逐渐增大时,纵坐标y如何变化?y轴左边的各点是否也有相同的规律?(2)这两条曲线会与x轴、y轴相交吗?为什么?探究2:反比例函数所在的象限画出函数y=

  3的图形,并思考下列问题:x

  (1)函数图形的两个分支分别位于哪些象限?(2)在每一象限内,函数值y随自变量x的变化是如何变化的?【归纳结论】一般地,当k>0时,反比例函数y=

  k的图象由分别在第一、x

  三象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而减小.探究3:反比例函数y=-索活动:

  6的图象的方式与步骤进行自主探索其图象;x666(2)可以通过探索函数y=与y=-之间的关系,画出y=-的图象.xxx

  6的图象.可以引导学生采用多种方式进行自主探x

  (1)可以用画反比例函数y=-

  【归纳结论】一般地,当k<0时,反比例函数y=

  k的图象由分别在第二、x

  四象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而增大.探究4:反比例函数的性质反比例函数y=-征?【教学说明】引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.

  k(k≠0)的图象是由两个分支组成的曲线.当xkk>0时,图象在一、三象限;当k<0时,图象在二、四象限.反比例函数y=与xky=(k≠0)的图象关于x轴或y轴对称.x66与y=的图象有什么共同特xx

  【归纳结论】反比例函数y=

  【教学说明】学生动手画反比函数图象,进一步掌握画函数图象的步骤.观察函数图象,掌握反比例函数的性质.三、运用新知,深化理解1.教材P9例1.2.如果函数y=2xk+1的图象是双曲线,那么k=【答案】-23.如果反比例函数y=整数k的值是【答案】1,24.已知直线y=kx+b的图象经过第一、二、四象限,则函数y=第象限.【答案】二、四5.反比例函数y=

  1的图象大致是图中的(x

  .

  k-3的图象位于第二、四象限内,那么满足条件的正x

  .

  kb的图象在x

  ).

  解析:因为k=1>0,所以双曲线的两支分别位于第一、三象限.【答案】C6.下列反比例函数图象一定在第一、三象限的是()

  【答案】C7.已知函数y(m-2)x3-m为反比例函数.(1)求m的值;(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?(3)当-3≤x≤-

  1时,求此函数的最大值和最小值.2

  2

  8.作出反比例函数y=

  12的图象,并根据图象解答下列问题:x

  (1)当x=4时,求y的值;(2)当y=-2时,求x的值;(3)当y>2时,求x的范围.解:列表:

  由图知:(1)y=3;(2)x=-6;(3)0<x<69.作出反比例函数y=-

  4的图象,结合图象回答:x

  (1)当x=2时,y的值;(2)当1<x≤4时,y的取值范围;(3)当1≤y<4时,x的取值范围.解:列表:

  由图知:(1)y=-2;(2)-4<y≤-1;(3)-4≤x<-1.【教学说明】为了让学生灵活的用反比例函数的性质解决问题,在研究每一题时,要紧扣性质进行分析,达到理解性质的目的.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.

  课后作业

  布置作业∶教材“习题1.2”中第1、2、4题.

  教学反思

  通过本节课的学习使学生理解了反比例函数的意义和性质,并掌握了用描点法画函数图象的方法.同时也为后面的学习奠定基础.从练习上来看,学生掌握的不够好,应多加练习.

  第2课时反比例函数的图象与性质(2)

  教学目标

  【知识与技能】1.会求反比例函数的解析式;2.巩固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性.【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】提高学生的观察、分析能力和对图形的感知水平.【教学重点】会求反比例函数的解析式.【教学难点】反比例函数图象和性质的运用.

  教学过程

  一、情景导入,初步认知1.反比例函数有哪些性质?2.我们学会了根据函数解析式画函数图象,那么你能根据一些条件求反比例函数的解析式吗?【教学说明】复习上节课的内容,同时引入新课.二、思考探究,获取新知1.思考:已知反比例函数y=

  k的图象经过点P(2,4)x

  (1)求k的值,并写出该函数的表达式;(2)判断点A(-2,-4),B(3,5)是否在这个函数的图象上;(3)这个函数的图象位于哪些象限?在每个象限内,函数值y随自变量x的增大如何变化?分析:(1)题中已知图象经过点P(2,4),即表明把P点坐标代入解析式成立,这样能求出k,解析式也就确定了.(2)要判断A、B是否在这条函数图象上,就是把A、B的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在.

  (3)根据k的正负性,利用反比例函数的性质来判定函数图象所在的象限、y随x的值的变化情况.【归纳结论】这种求解析式的方法叫做待定系数法求解析式.2.下图是反比例函数y=

  k的图象,根据图象,回答下列问题:x

  (1)k的取值范围是k>0还是k<0?说明理由;(2)如果点A(-3,y1),B(-2,y2)是该函数图象上的两点,试比较y1,y2的大小.分析:(1)由图象可知,反比例函数y=kx的图象的两支曲线分别位于第一、三象限内,在每个象限内,函数值y随自变量x的增大而减小,因此,k>0.(2)因为点A(-3,y1),B(-2,y2)是该函数图象上的两点且-3<0,-2<0.所以点A、B都位于第三象限,又因为-3<-2,由反比例函数的图像的性质可知:y1>y2.【教学说明】通过观察图象,使学生掌握利用函数图象比较函数值大小的方法.三、运用新知,深化理解1.若点A(7,y1),B(5,y2)在双曲线y=-【答案】y22.已知点A(x1,y1),B(x2,y2)是反比例函数y=若x1<0<x2,则有(A.y1<0<y2【答案】A3.若A(a1,b1),B(a2,b2)是反比例函数图象上的两个点,且a1<a2,则b1与b2的大小关系是()).B.y2<0<y1C.y1<y2<0D.y2<y1<0

  k(k>0)的图象上的两点,x

  3上,则y1、y2中较小的是x

  .

  A.b1<b2【答案】D4.函数y=A.y1<y2【答案】A

  B.b1=b2

  C.b1>b2

  D.大小不确定

  1的图象上有两点A(x1,y1),B(x2,y2),若0<x1<x2,则(x

  )

  B.y1>y2

  C.y1=y2

  D.y1、y2的大小不确定

  k(k≠0)的图象上,x

  5.已知点P(2,2)在反比例函数y=(1)当x=-3时,求y的值;

  (2)当1<x<3时,求y的取值范围.

  6.已知y=

  k(k≠0,k为常数)过三个点A(2,-8),B(4,b),C(a,2).x

  (1)求反比例函数的表达式;(2)求a与b的值.解:(1)将A(2,-8)代入反比例解析式得:k=-16,则反比例解析式为y=16;x

  (2)将B(4,b)代入反比例解析式得:b=-4;将C(a,2)代入反比例解析式得:2=16,即a=-8.a

  7.已知反比例函数的图象过点(1,-2).(1)求这个函数的解析式,并画出图象;(2)若点A(-5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?分析:(1)反比例函数的图象过点(1,-2),即当x=1时,y=-2.由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;(2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上.解:

  k(k≠0).而反比例函数的图象过点(1,xk-2),即当x=1时,y=-2.所以-2=,k=-2.即反比例函数的解析式为:12y=-.x

  (1)设:反比例函数的解析式为:y=

  222图象上,所以m==,点A的55x22坐标为(-5,).点A关于x轴的对称点(-5,-)不在这个图象上;点A关于5522y轴的对称点(5,)不在这个图象上;点A关于原点的对称点(5,-)在这个图55

  (2)点A(-5,m)在反比例函数y=-

  象上;【教学说明】通过练习,巩固本节课数学内容.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.

  课后作业

  布置作业:教材“习题1.2”中第7题.

  教学反思

  教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题的条件下,让学生自己去寻找答案,自己去发现规律.最后,教师清楚地向学生总结每一种函数解析式的适用范围,以及一般应告知的条件.在信息社会飞速发展的今天,教师要从以前的教师教、学生学的观念中解放出来,教会学生如何学,让学生自己去探究,自己去学习,去获取知识.在《中学数学课程标准》中明确规定:教师不仅是学生的引导者,也是学生的合作者.教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习,探讨,才能真正做到教学相长,也才能真正让每一个学生都学有所获.

  第3课时反比例函数的图象与性质(3)

  教学目标

  【知识与技能】1.综合运用一次函数和反比例函数的知识解决有关问题;2.借助一次函数和反比例函数的图象解决某些简单的实际问题.【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】能灵活运用函数图象和性质解决一些较综合的问题,培养学生看图(象)、识图(象)能力、体会用“数、形”结合思想解答函数题.【教学重点】理解并掌握一次函数,反比例函数的图象和性质,并能利用它们解决一些综合问题.【教学难点】学会从图象上分析、解决问题,理解反比例函数的性质.

  教学过程

  一、情景导入,初步认知1.正比例函数有哪些性质?2.一次函数有哪些性质?3.反比例函数有哪些性质?【教学说明】对所学的三种函数的性质教学复习,让学生对它们的性质有系统的了解.二、思考探究,获取新知1.已知一个正比例函数与一个反比例函数的图象交于P(-3,4),试求出它们的表达式,并在同一坐标系内画出这两个函数的图象.解:设正比例函数,反比例函数的表达式分别为y=k1x,y=

  k2,其中,k1,k2是常数,且均不为0.x

  由于这两个函数的图象交于P(-3,4),则P(-3,4)是这两个函数图象上的点,即点P的坐标分别满足这两个表达式.因此,4=k1×(-3),4=

  k24解得,k1=-33

  412k2=-12所以,正比例函数解析式为y=x,反比例函数解析式为y=-.函数图象3x

  如下图.

  【教学说明】通过图象,让学生掌握一次函数与反比例函数的综合应用.2.

  6在反比例函数y=的图象上取两点P(1,6),Q(6,1),过点P分别作x轴、x

  y轴的平行线,与坐标轴围成的矩形面积为S1=轴的平行线,与坐标轴围成的矩形面积为S2=什么?【归纳结论】反比例函数y=

  ;过点Q分别作x轴、y;S1与S2有什么关系?为

  k(k≠0)中比例系数k的几何意义:过双曲x

  k线y=(k≠0)上任意一点引x轴、y轴的平行线,与坐标轴围成的矩形面积为x

  k的绝对值.【教学说明】引导学生根据一定的分类标准研究反比例函数的性质,同时鼓励学生用自己的语言进行表述,从而提高学生的表达能力与数学语言的组织能力.三、运用新知,深化理解1.已知如图,A是反比例函数y=kx的图象上的一点,AB丄x轴于点B,且△ABO的面积是3,则k的值是(A.3B.-3C.6D.-6)

  分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所

  1围成的直角三角形面积S是个定值,即S=|k|.21解:根据题意可知:S△AOB=|k|=3,又反比例函数的图象位于第一象限,2

  k>0,则k=6.【答案】C2.反比例函数y=

  62与y=在第一象限的图象如图所示,作一条平行于x轴xx

  的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为(A.

  12

  )

  B.2

  C.3

  D.1

  分析:分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y轴,点C为垂足,再根据反比例函数系数k的几何意义分别求出四边形OEAC、△AOE、△BOC的面积,进而可得出结论.解:分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y轴,点C为垂足,∵由反比例函数系数k的几何意义可知,S四边形OEAC=6,S△AOE=3,S△BOC=1,∴S△AOB=S四边形OEAC-S△AOE-S△BOC=6-3-1=2.【答案】B3.已知直线y=x+b经过点A(3,0),并与双曲线y=

  k的交点为B(-2,m)x

  和C,求k、b的值.

  解:点A(3,0)在直线y=x+b上,所以0=3+b,b=-3.一次函数的解析式为:y=x-3.又因为点B(-2,m)也在直线y=x-3上,所以m=-2-3=-5,即B(-2,-5).而点B(-2,-5)又在反比例函数y=5)=10.4.已知反比例函数y=

  k1的图象与一次函数y=k2x-1的图象交于A(2,1).x

  k上,所以k=-2×(-x

  (1)分别求出这两个函数的解析式;(2)试判断A点关于坐标原点的对称点与两个函数图象的关系.分析:(1)因为点A在反比例函数和一次函数的图象上,把A点的坐标代入这两个解析式即可求出k1、k2的值.(2)把点A关于坐标原点的对称点A′坐标代入一次函数和反比例函数解析式中,可知A′是否在这两个函数图象上.解:(1)因为点A(2,1)在反比例函数和一次函数的图象上,所以k1=2×1=2.1=2k2-1,k2=1.所以反比例函数的解析式为:y==x-1.(2)点A(2,1)关于坐标原点的对称点是A′(-2,-1).把A′点的横坐标代入反比例函数解析式得,y=

  2=-1,所以点A在反比例函数图象上.把A′点的2

  2;一次函数解析式为:yx

  横坐标代入一次函数解析式得,y=-2-1=-3,所以点A′不在一次函数图象上.

  5.已知一次函数y=kx+b的图象经过点A(0,1)和点B(a,-3a),a<0,且点B在反比例函数的y=-(1)求a的值.(2)求一次函数的解析式,并画出它的图象.(3)利用画出的图象,求当这个一次函数y的值在-1≤y≤3范围内时,相应的x的取值范围.(4)如果P(m,y1)、Q(m+1,y2)是这个一次函数图象上的两点,试比较y1与y2的大小.分析:(1)由于点A、点B在一次函数图象上,点B在反比例函数图象上,把这些点的坐标代入相应的函数解析式中,可求出k、b和a的值.(2)由(1)求出的k、b、a的值,求出函数的解析式,通过列表、描点、连线画出函数图象.(3)和(4)都是利用函数的图象进行解题.

  3的图象上.x

  一次函数和反比例函数的图象为:

  (3)从图象上可知,当一次函数y的值在-1≤y≤3范围内时,相应的x的值为:-1≤x≤1.(4)从图象可知,y随x的增大而减小,又m+1>m,所以y1>y2.或解:当x1=m时,y1=-2m+1;当x2=m+1时,y2=-2×(m+1)+1=-2m-1所以y1-y2=(-2m+1)-(-2m-1)=2>0,即y1>y2.6.如图,一次函数y=kx+b的图象与反比例函数y=点.(1)利用图象中的条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数值的x的取值范围.

  m的图象交于A、B两x

  分析:(1)把A、B两点坐标代入两解析式,即可求得一次函数和反比例函数解析式.(2)因为图象上每一点的纵坐标与函数值是相对应的,一次函数值大于反比例函数值,反映在图象上,自变量取相同的值时,一次函数图象上点的纵坐标大于反比例函数图象上点的纵坐标.

  【教学说明】检测题采取多种形式呈现,增加了灵活性,以基础题为主,也有少量综合问题,可使不同层次水平的学生均有机会获得成功的体验.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.

  课后作业

  布置作业:教材“习题1.2”中第6题.通过本节课的学习,发现了一些问题,因此必须强调:

  教学反思

  1.综合运用一次函数和反比例函数求解两种函数解析式,往往用待定系数法.2.观察图象,把图象中提供、展现的信息转化为与两函数有关的知识来解题.

  1.3反比例函数的应用

  教学目标

  【知识与技能】经历通过实验获得数据,然后根据数据建立反比例函数模型的一般过程,体会建模思想.【过程与方法】观察、比较、合作、交流、探索.【情感态度】体验数形结合的思想.【教学重点】建立反比例函数的模型,进而解决实际问题.【教学难点】经历探索的过程,培养学生学习数学的主动性和解决问题的能力.

  教学过程

  一、情景导入,初步认知复习回顾1.什么是反比例函数?2.反比例函数的图象是什么?3.反比例函数图象有哪些性质?4.反比例函数的图象对称性如何?【教学说明】通过提出问题,引发学生思考,培养学生解决问题的能力.二、思考探究,获取新知1.某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?(1)根据压力F(N)、压强p(Pa)与受力面积S(m2)之间的关系式p=断:当F一定时,p是S的反比例函数吗?(2)如人对地面的压力F=450N,完成下表:

  F,请你判S

  (3)当F=450N时,试画出该函数的图象,并结合图象分析当受力面积S增大时,地面所受压强p是如何变化的,据此,请说出它们铺垫木板通过湿地的道理.解:(1)对于p=例函数.(2)因为F=450N,所以当S=0.005m2时,由p=

  F得:p=450/0.005=90000SF,当F一定时,根据反比例函数的定义可知,p是S的反比S

  (Pa)类似的,当S=0.01m2时,p=45000Pa;当S=0.02m2时,p=22500Pa;当S=0.04m2时,p=11250Pa(3)当F=450N时,该反比例函数的表达式为p=450/S,它的图象如下图所示,由图象的性质可知,当受力面积S增大时,地面所受压强p会越来越小,因此,该科技小组通过铺垫木板的方法来增大受力面积.以减小地面所受压强,从而可以顺利地通过湿地.

  2.你能根据玻意耳定律(在温度不变的情况下,气体的压强p与它的体积V的乘积是一个常数K(K>0),即pV=K)来解释:为什么使劲踩气球时,气体会爆炸?【教学说明】逐步提高学生从函数图象中获取信息的能力,提高感知水平;此外,在解决实际问题时,要引导学生体会知识之间的联系及知识的综合运用.三、运用新知,深化理解1.教材P15例题.2.一个水池装水12m3,如果从水管中每小时流出xm3的水,经过yh可以把

  水放完,那么y与x的函数关系式是是【答案】y=.

  12;x>0x

  ,自变量x的取值范围

  13.若梯形的下底长为x,上底长为下底长的,高为y,面积为60,则y与3

  x的函数关系是【答案】y=

  90x

  (不考虑x的取值范围).

  4.某一数学课外兴趣小组的同学每人制作一个面积为200cm2的矩形学具进行展示.设矩形的宽为xcm,长为ycm,那么这些同学所制作的矩形的长y(cm)与宽x(cm)之间的函数关系的图象大致是()

  【答案】A5.下列各问题中两个变量之间的关系,不是反比例函数的是()

  A.小明完成百米赛跑时,所用时间t(s)与他的平均速度v(m/s)之间的关系B.长方形的面积为24,它的长y与宽x之间的关系C.压力为600N时,压强p(Pa)与受力面积S(m2)之间的关系D.一个容积为25L的容器中,所盛水的质量m(kg)与所盛水的体积V(L)之间的关系【答案】D6.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:

  则可以反映y与x之间的关系的式子是(A.y=3000x【答案】DB.y=6000xC.y=

  3000x

  ).D.y=

  6000x

  7.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y与x的函数图象是()

  【答案】A8.一个长方体的体积是100cm3,它的长是y(cm),宽是5cm,高是x(cm).(1)写出长y(cm)关于高x(cm)的函数关系式,以及自变量x的取值范围;(2)画出(1)中函数的图象;(3)当高是3cm时,求长.解:(1)y=

  20(x>0);x

  20cm.3

  (2)图象略;(3)长为

  【教学说明】用函数观点来处理实际问题的应用,加深对函数的认识.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.

  课后作业

  布置作业:教材“习题1.3”中第1、2、4题.

  教学反思

  本节课通过学生自主探索,合作交流,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极的情感态度,促进良好的数学观的形成.在教学手段上,本节课大量使用多媒体辅助教学,既能体现知识的背景材料,又能一下子引起学生的注意力,有效地节省了时间,增大了课堂容量.生动形象的动画演示,动感强,直观性好,既加深了学生的理解,又培养了学生的抽象思维能力,同时也向学生渗透了归纳类比,数形结合的数学思想方法.

  第2章一元二次方程

  2.1一元二次方程

  教学目标【知识与技能】探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知识.【过程与方法】在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系.【情感态度】通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.【教学重点】一元二次方程的概念.【教学难点】如何把实际问题转化为数学方程.教学过程一、情景导入,初步认知问题1:已知一矩形的长为200cm,宽150cm.在它的中间挖一个圆,使剩余部分的面积为原矩形面积的34,求挖去的圆的半径xcm应满足的方程.(π取3)问题2:据某市交通部门统计,前年该市汽车拥有量为75万辆,两年后增加到108万辆,求该市两年来汽车拥有量的年平均增长率x应满足的方程.你能列出相应的方程吗?【教学说明】为学生创设了一个回忆、思考的情境,又是本课一种很自然的引入,为本课的探究活动做好铺垫.二、思考探究,获取新知1.对于问题1:找等量关系:矩形的面积—圆的面积=矩形的面积×3/4列出方程:200×150-3x2=200×150×3/4对于问题2:①

  等量关系:两年后的汽车拥有量=前年的汽车拥有量×(1+年平均增长率)列出方程:75(1+x)2=1082②

  2

  2.能把①,②化成右边为0,而左边是只含有一个未知数的二次多项式的形式吗?让学生展开讨论,并引导学生把①,②化成下列形式:①化简,整理得x2-2500=0③④

  ②化简,整理得25x2+50x-11=0

  3.讨论:方程③、④中的未知数的个数和次数各是多少?【教学说明】分组合作、小组讨论,经过讨论后交流小组的结论,可以发现上述方程都不是所学过的方程,特点是两边都是整式,且整式的最高次数是2次.【归纳结论】如果一个方程通过移项可以使右边为0,而左边是只含有一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是:ax2+bx+c=0,(a,b,c是常数且a≠0),其中a,b,c分别叫作二次项系数、一次项系数、常数项.4.让学生指出方程③,④中的二次项系数、一次项系数和常数项.【教学说明】让学生充分感受所列方程的特点,再通过类比的方法得到定义,从而达到真正理解定义的目的.三、运用新知,深化理解1.见教材P27例题.2.下列方程是一元二次方程的有.

  【答案】(5)3.已知(m+3)x2-3mx-1=0是一元二方程,则m的取值范围是_____.分析:一元二次方程二次项的系数不等于零.故m≠-3.【答案】m≠-34.把方程(1-3x)(x+3)=2x2+1化为一元二次方程的一般形式,并写出二次项,

  二次项系数,一次项,一次项系数及常数项.解:原方程化为一般形式是:5x2+8x-2=0(若写成-5x2-8x+2=0,则不符合人们的习惯),其中二次项是5x2,二次项系数是5,一次项是8x,一次项系数是8,常数项是-2(因为一元二次方程的一般形式是三个单项式的和,所以不能漏写单项式系数的负号).5.关于x方程mx2-3x=x2-mx+2是一元二次方程,m应满足什么条件?分析:先把这个方程变为一般形式,只要二次项的系数不为0即可.解:由mx2-3x=x2-mx+2得到(m-1)x2+(m-3)x-2=0,所以m-1≠0,即m≠1.所以关于x的方程mx2-3x=x2-mx+2是一元二次方程,m应满足m≠1.6.一元二次方程(x+1)2-x=3(x2-2)化成一般形式是.分析:一元二次方程一般形式是ax2+bx+c=0(a≠0),对照一般形式可先去括号,再移项,合并同类项,得2x2-x-7=0.【答案】2x2-x-7=07.把方程-5x2+6x+3=0的二次项系数化为1,方程可变为(A.x2+6/5x+3/5=0C.x2-6/5x-3/5=0【答案】C注意方程两边除以-5,另两项的符号同时发生变化.8.已知方程(m+2)x2+(m+1)x-m=0,当m满足______时,它是一元一次方程;当m满足______时,它是二元一次方程.分析:当m+2=0,m=-2时,方程是一元一次方程;当m+2≠0,m≠-2时,方程是二元一次方程.【答案】m=-2m≠-29.某型号的手机连续两次降价,每个售价由原来的1185元降到了580元,设平均每次降价的百分率为x,则列出方程为____________【答案】1185(1-x)2=58010.当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元二次方程?B.x2-6x-3=0D.x2-6/5x+3/5=0)

  这时方程的二次项系数、一次项系数分别是什么?当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元一次方程?解:当a≠1时是一元二次方程,这时方程的二次项系数是a-1,一次项系数是-b;当a=1,b≠0时是一元一次方程.【教学说明】这组练习目的在于巩固学生对一元二次方程定义中几个特征的理解.进一步巩固学生对一元二次方程的基本概念.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题2.1”中第1、2、6题.教学反思本节课是一元二次方程的第一课时,通过对本节课的学习,学生将掌握一元二次方程的定义、一般形式、及有关概念,并学会利用方程解决实际问题.在教学过程中,注重重难点的体现.本节课内容对于学生整个中学阶段的数学学习有着重大的意义,能否学好关系到日后学习的成败,因此必须要让学生吃透内容并且要真正能消化.

  2.2一元二次方程的解法

  2.2.1配方法教学目标

  【知识与技能】1.知道解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程.2.学会用直接开平方法解形如(ax+b)2-k=0(k≥0)的方程.3.理解“配方”是一种常用的数学方法,在用配方法将一元二次方程变形的过程中,让学生进一步体会化归的思想方法.【过程与方法】通过探索配方法的过程,让学生体会转化的数学思想方法.【情感态度】学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增强学生学习数学的兴趣.【教学重点】运用配方法解一元二次方程.【教学难点】把一元二次方程转化为形如(x+n)2=d(d≥0)的过程.教学过程一、情景导入,初步认知1.根据完全平方公式填空:(1)x2+6x+9=((2)x2-8x+16=((3)x2+10x+((4)x2-3x+()2)2)2=()2=()2)2

  2.前面我们已经学了一元一次方程和二元一次方程组的解法,解二元一次方程组的基本思路是什么?(消元、化二元一次方程组为一元一次方程).由解二元一次方程组的基本思路,你能想出解一元二次方程的基本思路吗?

  3.你会解方程x2+6x-16=0吗?你会将它变成(x+m)2=n(n为非负数)的形式吗?试试看.如果是方程2x2+1=3x呢?【教学说明】学会利用完全平方知识填空,初步配方为后面学习打下基础.二、思考探究,获取新知1.解方程:x2-2500=0.问:怎样将这个方程“降次”为一元一次方程?把方程写成x2=2500这表明x是2500的平方根,根据平方根的意义,得x=2500或x=-2500因此,原方程的解为x1=50,x2=-50【归纳结论】一元二次方程的解也是一元二次方程的根.2.解方程(2x+1)2=2解:根据平方根的有意义,得2x+1=2或2x+1=-2因此,原方程的根为x1=

  2-122+1,x=22

  3.通过上面的两个例题,你知道什么时候用开平方的方法来解一元二次方程呢?【归纳结论】对于形如(x+n)2=d(d≥0)的方程,可直接用开平方法解.直接开平方法的步骤是:把方程变形成(x+n)2=d(d≥0),然后直接开平方得x+n=d和x+n=-d,分别解这两个一元一次方程,得到的解就是原一元二次方程的解.4.解方程x2+4x=12我们已知,如果把方程x2+4x=12写成(x+n)2=d的形式,那么就可以根据平方根的意义来求解.那么,如何将左边写成(x+n)2的形式呢?我们学过完全平方式,你能否将左边x2+4x添上一项使它成为一个完全平方

  式.请相互交流.写出解题过程.【归纳结论】一般地,像上面这样,在方程x2+4x=12的左边加上一次项系数的一半的平方,在减去这个数,使得含未知数的项在一个完全平方式里,这种做法叫作配方.配方、整理后就可以直接根据平方根的意义来求解了.这种解一元二次方程的方法叫作配方法.5.如何用配方法解方程25x2+50x-11=0呢?如果二次项系数为1,那就好办了!那么怎样将二次项的系数化为1呢?同伴之间可以相互交流.试着写出解题过程.6.通过上面配方法解一元二次方程的过程,你能总结用配方法解一元二次方程的步骤吗?【归纳结论】用配方法解一元二次方程的步骤:(1)把方程化为一般形式ax2+bx+c=0;(2)把方程的常数项通过移项移到方程的右边;(3)若方程的二次项系数不为1时,方程两边同时除以二次项系数a;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.【教学说明】通过这一过程,学生发现能用直接开平方法求解的方程都可以转化成一般形式,一般形式的方程也能用配方法转化为可以直接开平方的形式,

  2所以总结出解一元二次方程的基本思路是将一元二次方程转化为(x+n)=d(d≥0)

  的形式.三、运用新知,深化理解1.见教材P33例3、P34例4.2.列方程(注:学生练习,教师巡视,适当辅导.)(1)x2-10x+24=0;(2)(2x-1)(x+3)=5;(3)3x2-6x+4=0.

  解:(1)移项,得x2-10x=-24配方,得x2-10x+25=-24+25,由此可得(x-5)2=1,x-5=±1,∴x1=6,x2=4.(2)整理,得2x2+5x-8=0.移项,得2x2+5x=8二次项系数化为1得x2+5/2x=4,配方,得x2+5/2x+(5/4)2=4+(5/4)2(x+5/4)2=89/16,由此可得x+5/4=±89/4,x1=

  -589-5-89,x2=.44

  (3)移项,得3x2-6x=-4二次项系数化为1,得x2-2x=-4/3,配方,得x2-2x+12=-4/3+12,(x-1)2=-1/3因为实数的平方不会是负数,所以x取任何实数时,(x-1)2都是非负数,上式都不成立,即原方程无实数根.3.解方程x2-8x+1=0分析:显然这个方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式.解:x2-8x+1=0移项得:x2-8x=-1配方得:x2-8x+16=-1+16即(x-4)2=15两边开平方得:

  x-4=±15∴x1=4+15,x2=4-15.4.用配方法将下列各式化为a(x+h)2+k的形式.(1)-3x2-6x+1;(2)2/3y2+1/3y+2;(3)0.4x2-0.8x-1.解:(1)-3x2-6x+1=-3(x2+2x-1/3)=-3(x2+2x+12-12-1/3)=-3[(x+1)2-4/3]=-3(x+1)2+4(2)2/3y2+1/3y-2=2/3(y2+1/2y-3)=2/3[y2+1/2y+(1/4)2-(1/4)2-3]=2/3[(y+1/4)2-49/16]=2/3(y+1/4)2-49/24.(3)0.4x2-0.8x-1=0.4(x2-2x-2.5)=0.4[(x2-2x+12)-12-2.5]=0.4(x-1)2-1.4【教学说明】通过练习,使学生能灵活运用“配方法”,并强化学生对一元二次方程解的认识.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题2.2”中第1、2、3题.教学反思

  在教学过程中,坚持由简单到复杂,由特殊到一般的原则,采用了观察对比,合作探究等不同的学习方式,充分发挥学生的主体作用,让学生主动探究发现结论,教师做学生学习的引导者,合作者,促进者,要适时鼓励学生,实现师生互动.同时,我认识到教师不仅仅要教给学生知识,更要在教学中渗透数学中的思想方法,培养学生良好的数学素养和学习能力,让学生学会学习.

  2.2.2公式法

  教学目标【知识与技能】1.经历推导求根公式的过程,加强推理技能的训练.2.会用公式法解简单系数的一元二次方程.【过程与方法】通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思想.【情感态度】让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感,感受公式的对称美、简洁美,产生热爱数学的情感.【教学重点】求根公式的推导和公式法的应用.【教学难点】理解求根公式的推导过程.教学过程一、情景导入,初步认知1.用配方法解方程:(1)x2+3x+2=0;(2)2x2-3x+5=0.2.由用配方法解一元二次方程的基本步骤知:对于每个具体的一元二次方程,都使用了相同的一些计算步骤,这启发我们思考,能不能对一般形式的一元二次方程ax2+bx+c=0(a≠0)使用这些步骤,然后求出解x的公式?【教学说明】这样做了以后,我们可以运用这个公式来求每一个具体的一元

  二次方程的解,取得一通百通的效果.二、思考探究,获取新知1.用配方法解方程:ax2+bx+c=0(a≠0)分析:前面具体数字已做了很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax2+bx=-c

  【归纳结论】由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a、b、c代入式子

  就可求出方程的根.(2)这个式子叫做一元二次方程的求根公式.

  (3)利用求根公式解一元二次方程的方法叫公式法.【强调】用公式法解一元二次方程时,必须注意两点:(1)将a、b、c的值代入公式时,一定要注意符号不能出错.(2)式子b2-4ac≥0是公式的一部分.【教学说明】让学生思考对于一般形式的一元二次方程ax2+bx+c=0(a≠0)能否用配方法求出它的解?通过解方程发现归纳一元二次方程的求根公式.2.展示课本P36例5(1),(2),按课本方式引导学生用公式法解一元二次方程,并提醒学生在确定a,b,c的值时,先要将一元二次方程式化为一般形式,注意a,b,c的符号.3.引导学生完成P37例6.4.你能总结出用公式法解一元二次方程的一般步骤吗?【归纳结论】首先要把原方程化为一般形式,从而正确地确定a,b,c的值;其次要计算b2-4ac的值,当b2-4ac≥0时,再用求根公式求解.三、运用新知,深化理解1.用公式法解下列方程.2x2+3=7x分析:用公式法解一元二次方程,需先确定a、b、c的值、再算出b2-4ac的值、最后代入求根公式求解.解:2x2-7x+3=0a=2,b=-7,c=3∵b2-4ac=(-7)2-4×2×3=25>0

  2.某数学兴趣小组对关于x的方程(m+1)xm2+1+(m-2)x-1=0提出了下列问题.(1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程.(2)若使方程为一元一次方程m是否存在?若存在,请求出.

  你能解决这个问题吗?分析:(1)要使它为一元二次方程,必须满足m2+1=2,同时还要满足(m+1)≠0.(2)要使它为一元一次方程,必须满足∶

  解:(1)存在.根据题意,得:m2+1=2m2=1m=±1当m=1时,m+1=1+1=2≠0当m=-1时,m+1=-1+1=0(不合题意,舍去)∴当m=1时,方程为2x2-1-x=0a=2,b=-1,c=-1b2-4ac=(-1)2-4×2×(-1)=1+8=9

  因此,该方程是一元二次方程时,m=1,两根x1=1,x2=-12.(2)存在.根据题意,得:①m2+1=1,m2=0,m=0因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0所以m=0满足题意.②当m2+1=0,m不存在.③当m+1=0,即m=-1时,m-2=-3≠0所以m=-1也满足题意.当m=0时,一元一次方程是x-2x-1=0,解得:x=-1当m=-1时,一元一次方程是-3x-1=0

  解得x=-1/3因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-1时,其一元一次方程的根为x=-1/3.【教学说明】主体探究、探究利用公式法解一元二次方程的一般方法,进一步理解求根公式.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题2.2”中第4题.教学反思通过复习配方法使学生会对一元二次方程的定义及解法有一个熟悉的印象.然后让学生用配方法推导一般形式ax2+bx+c=0(a≠0)的解,并掌握利用根的判别式判断一元二次方程根的情况.使学生的推理能力得到加强.

  2.2.3因式分解法

  教学目标【知识与技能】能灵活运用直接开平方法、配方法、公式法及因式分解法解一元二次方程.能够根据一元二次方程的结构特点,灵活择其简单的方法.【过程与方法】通过比较、分析、综合,培养学生分析问题解决问题的能力.【情感态度】通过知识之间的相互联系,培养学生用联系和发展的眼光分析问题,解决问题,树立转化的思想方法.【教学重点】用因式分解法一元二次方程.【教学难点】理解因式分解法解一元二次方程的基本思想.教学过程

  一、情景导入,初步认知复习:将下列各式分解因式(1)5x2-4x(2)x2-4x+4(3)4x(x-1)-2+2x(4)x2-4(5)(2x-1)2-x2【教学说明】通过复习相关知识,有利于学生熟练正确将多项式因式分解,从而有利降低本节的难度.二、思考探究,获取新知1.解方程x2-3x=0可用因式分解法求解方程左边提取公因式x,得x(x-3)=0由此得x=0或x-3=0即x1=0,x2=3与公式法相比,哪种更简单?【归纳结论】利用因式分解来解一元二次方程的方法叫做因式分解法.2.用因式分解法解下列方程;(1)x(x-5)=3x;(2)2x(5x-1)=3(5x-1);(3)(35-2x)2-900=0.3.你能总结因式分解法解一元二次方程的一般步骤吗?【归纳结论】把方程化成一边为0,另一边是两个一次因式的乘积的形式,然后使每一个一次因式等于0,分别解两个一元一次方程,得到的两个解就是原一元二次方程的解.4.说一说:因式分解法适用于解什么形式的一元二次方程.【归纳结论】因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程.5.选择合适的方法解下列方程:

  (1)x2+3x=0;(2)5x2-4x-3=0;(3)x2+2x-3=0.按课本方式引导学生用因式分解法解一元二次方程.6.如何选择合适的方法解一元二次方程呢?【归纳结论】公式法适用于所有一元二次方程.因式分解法(有时需要先配方)适用于所有一元二次方程.配方法是为了推导出求根公式,以及先配方,然后用因式分解法.总之,解一元二次方程的基本思路都是:将一元二次方程转化成为一元一次方程,即降次,其本质是把方程ax2+bx+c=0(a≠0)的左边的二次多项式分解成两个一次多项式的乘积,即ax2+bx+c=a(x-x1)(x-x2),其中x1和x2是方程ax2+bx+c=0的两个根.【教学说明】在学生解决问题的基础上引导学生探索利用因式分解解方程的方法,感受因式分解的作用以及能够解方程的依据.三、运用新知,深化理解1.用因式分解法解下列方程:(1)5x2+3x=0;(2)7x(3-x)=4(x-3).分析:(1)左边=x(5x+3),右边=0;(2)先把右边化为0,7x(3-x)-4(x-3)=0,找出(3-x)与(x-3)的关系.解:(1)因式分解,得x(5x+3)=0,于是得x=0或5x+3=0,x1=0,x2=-3/5;(2)原方程化为7x(3-x)-4(x-3)=0,因式分解,得(x-3)(-7x-4)=0,于是得x-3=0或-7x-4=0,x1=3,x2=-4/72.选择合适的方法解下列方程:(1)2x2-5x+2=0;

  (2)(1-x)(x+4)=(x-1)(1-2x).分析:(1)题宜用公式法;(2)题中找到(1-x)与(x-1)的关系用因式分解法;解:(1)a=2,b=-5,c=2,b2-4ac=(-5)2-4×2×2=9>0,

  x1=2,x2=1/2(2)原方程化为(1-x)(x+4)+(1-x)(1-2x)=0,因式分解,得(1-x)(5-x)=0,即(x-1)(x-5)=0,x-1=0或x-5=0,x1=1,x2=53.用因式分解法解下列方程:(1)10x2+3x=0;(2)7x(3-x)=6(x-3);(3)9(x-2)2=4(x+1)2.分析:(1)左边=x(10x+3),右边=0;(2)先把右边化为0,7x(3-x)-6(x-3)=0,找出(3-x)与(x-3)的关系;(3)应用平方差公式.解:(1)因式分解,得x(10x+3)=0,于是得x=0或10x+3=0,x1=0,x2=-3/10;(2)原方程化为7x(3-x)-6(x-3)=0,因式分解,得(x-3)(-7x-6)=0,于是得x-3=0或-7x-6=0,x1=3,x2=-6/7;(3)原方程化为9(x-2)2-4(x+1)2=0,因式分解,得[3(x-2)+2(x+1)][3(x-2)-2(x+1)]=0,

  即(5x-4)(x-8)=0,于是得5x-4=0或x-8=0,x1=4/5,x2=8.4.已知(a2+b2)2-(a2+b2)-6=0,求a2+b2的值.分析:若把(a2+b2)看作一个整体,则已知条件可以看作是以(a2+b2)为未知数的一元二次方程.解:设a2+b2=x,则原方程化为x2-x-6=0.a=1,b=-1,c=-6,b2-4ac=12-4×(-6)×1=25>0,x=

  125,∴x1=3,x2=-2.2

  即a2+b2=3或a2+b2=-2,∵a2+b2≥0,∴a2+b2=-2不合题意应舍去,取a2+b2=3.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“练习题2.2”中第5、6、9、10题.教学反思这节课主要学习了用因式分解法解一元二次方程的概念及其解法,解法的基本思路是将一元二次方程转化为一元一次方程,而达到这一目的,我们主要利用了因式分解“降次”.在今天的学习中,要逐步深入、领会、掌握“转化”这一数学思想方法.

  2.3一元二次方程根的判别式

  教学目标【知识与技能】能运用根的判别式,判别方程根的情况和进行有关的推理论证.【过程与方法】经历思考、探究过程,发展总结归纳能力,能有条理地、清晰地阐述自己的观点.【情感态度】积极参与数学活动,对其产生好奇心和求知欲.【教学重点】能运用根的判别式,判别方程根的情况和进行有关的推理论证.【教学难点】从具体题目来推出一元二次方程ax2+bx+c=0(a≠0)的b2-4ac的情况与根的情况的关系.教学过程一、情景导入,初步认知同学们,我们已经学会了怎么解一元二次方程,对吗?那么,现在老师这儿还有一手绝活,就是:我随便拿到一个一元二次方程的题目,我不用具体地去解它,就能很快知道它的根的大致情况,不信呀!同学们可以随便地出两个题考考我.【教学说明】这样设计,能马上激发学生的学习兴趣和求知欲,为后面发现结论创造一个最佳的心理状态.二、思考探究,获取新知1.问题:什么是求根公式?它有什么作用?2.观察求根公式x

  -bb2-4ac回答下列问题:2a

  (1)当b2-4ac>0时,一元二次方程ax2+bx+c=0(a≠0)有几个根?(2)当b2-4ac=0时,一元二次方程ax2+bx+c=0(a≠0)有几个根?

  (3)当b2-4ac<0时,一元二次方程ax2+bx+c=0(a≠0)有几个根?3.综上所知,一元二次方程ax2+bx+c=0(a≠0)的根的情况是由b2-4ac来判断的.【归纳结论】我们把b2-4ac叫做一元二次方程的根的判别式,通常用符号“Δ”表示.即:Δ=b2-4ac⑴当Δ=b2-4ac>0时,一元二次方程ax2+bx+c=0(a≠0)有两个不相等实数根即x1

  -bb2-4ac-b-b2-4ac,x2.2a2a

  ⑵当Δ=b2-4ac=0时,一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根.⑶当Δ=b2-4ac<0时,一元二次方程ax2+bx+c=0(a≠0)没有实数根.4.不解方程判定下列方程的根的情况.(1)3x2+4x-3=0(2)4x2=12x-9(3)7y=5(y2+1)解:(1)因为Δ=b2-4ac=42-4×3×(-3)=52>0所以,原方程有两个不相等的实数根.(2)将原方程化为一般形式,得4x2-12x+9=0因为Δ=b2-4ac=(-12)2-4×4×9=0所以,原方程有两个相等的实数根.(3)将原方程化为一般形式,得5y2-7y+5=0因为Δ=b2-4ac=(-7)2-4×5×5=-51<0所以,原方程没有实数根.【教学说明】学生从具体到抽象的观察、分析与概括能力并使学生从感性认识上升到理性认识,真正体验自己发现结论的成功乐趣.

  三、运用新知,深化理解1.已知方程x2+px+q=0有两个相等的实根,则p与q的关系是.【答案】p2-4q=02.若方程x2+px+q=0的两个根是-2和3,则p,q的值分别为.【答案】-1,-63.判断下列方程是否有解:(1)5x2-2=6x(2)3x2+2x+1=0解析:演算或口算出b2-4ac,从而判断是否有根解:(1)有(2)没有4.不解方程,判定方程根的情况.(1)16x2+8x=-3(2)9x2+6x+1=0(3)2x2-9x+8=0(4)x2-7x-18=0分析:不解方程,判定根的情况,只需用b2-4ac的值大于0、小于0、等于0的情况进行分析即可.解:(1)化为16x2+8x+3=0这里a=16,b=8,c=3,b2-4ac=64-4×16×3=-128<0所以,方程没有实数根.(2)a=9,b=6,c=1,b2-4ac=36-36=0,∴方程有两个相等的实数根.(3)a=2,b=-9,c=8b2-4ac=(-9)2-4×2×8=81-64=17>0∴方程有两个不相等的实根.(4)a=1,b=-7,c=-18b2-4ac=(-7)2-4×1×(-18)=121>0∴方程有两个不相等的实根.5.若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示).分析:要求ax+3>0的解集,就是求ax>-3的解集,那么就转化为要判定a

  的值是正、负或0.因为一元二次方程(a-2)x2-2ax+a+1=0没有实数根,即(-2a)2-4(a-2)(a+1)<0就可求出a的取值范围.解:∵关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数根.∴(-2a)2-4(a-2)(a+1)=4a2-4a2+4a+8<0∴a<-2∵ax+3>0即ax>-3,∴x<-3/a∴所求不等式的解集为x<-3/a6.已知关于x的一元二次方程x2+2x+m=0.(1)当m=3时,判断方程的根的情况;(2)当m=-3时,求方程的根.分析:(1)判断一元二次方程根的情况,只要看根的判别式Δ=b2-4ac的值的符号即可判断:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.(2)把m的值代入方程,用因式分解法求解即可.解:(1)∵当m=3时,Δ=b2-4ac=22-4×3=-8<0,∴原方程无实数根.(2)当m=-3时,原方程变为x2+2x-3=0,∵(x-1)(x+3)=0,∴x-1=0,x+3=0.∴x1=1,x2=-3.7.已知一元二次方程x2+px+q+1=0的一根为2.(1)求q关于p的关系式;(2)求证:抛物线y=x2+px+q与x轴有两个交点.分析:(1)根据一元二次方程的解的定义,把x=2代入已知方程即可求得q关于p的关系式;(2)由关于x的方程x2+px+q=0的根的判别式的符号来证明抛物线y=x2+px+q与x轴有两个交点.解:(1)∵一元二次方程x2+px+q+1=0的一根为2,∴4+2p+q+1=0,即q=-2p-5;

  (2)证明:令x2+px+q=0.则Δ=p2-4q=p2-4(-2p-5)=(p+4)2+4>0,即Δ>0,所以,关于x的方程x2+px+q=0有两个不相等的实数根.即抛物线y=x2+px+q与x轴有两个交点.【教学说明】使学生能及时巩固本节课所学知识,培养学生自觉学习的习惯,同时对学有余力的学生留出自由的发展空间.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题2.3”中第1、2、3题.教学反思本节课的教学坚持从学生实际出发,以学生为主体,注重对新理念的贯彻和教学方法的使用;在突破难点时,多种方法并用,注意培养自学能力;坚持当堂训练,例题、练习的设计针对性强,重点突出,对方法的总结言简意赅;学生能够积极、主动的参与,充分经历了知识的形成、发展与应用的过程,在这个过程中掌握了知识,形成了技能,发展了思维;教学效果很好!

  *2.4一元二次方程根与系数的关系

  教学目标【知识与技能】掌握一元二次方程根与系数的关系,会运用关系定理求已知一元二次方程的两根之和及两根之积,并会解一些简单的问题.【过程与方法】经历一元二次方程根与系数关系的探究过程,培养学生的观察思考、归纳概括能力,在运用关系解决问题的过程中,培养学生解决问题能力,渗透整体的数学思想,求简思想.【情感态度】通过学生自己探究,发现根与系数的关系,增强学习的信心,培养科学探究精神.【教学重点】根与系数关系及运用.【教学难点】定理的发现及运用.教学过程一、情景导入,初步认知我们知道,一元二次方程ax2+bx+c=0的根的值是由a、b、c来决定的.除此之外,根与系数之间还有什么关系呢?【教学说明】由问题引入新课,提高学生学习兴趣.二、思考探究,获取新知1.探究规律先填空,再找规律:

  2.若x1、x2是一元二次方程ax2+bx+c=0(a≠0)的两个根,你能猜想x1+x2=______,x1·x2=______.3.你能证明你的猜想吗?当Δ≥0时,一元二次方程ax2+bx+c=0(a≠0)有两个根,分别为:

  -bb2-4ac-b-b2-4ac,x2x12a2a

  【归纳结论】当Δ≥0时,一元二次方程的根与系数之间具有以下关系:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.即:

  这种关系称为韦达定理.【教学说明】通过学生计算一些特殊的一元二次方程的两根之和与两根之积,启发学生从中发现存在的一般规律,渗透特殊到一般的思考方法.三、运用新知,深化理解1.教材P47例1、例2.2.利用根与系数的关系,求一元二次方程2x2+3x-1=0的两个根的.(1)平方和(2)倒数和分析:根据一元二次方程的两根与系数之间的关系可求.

  3.已知方程5x2+kx-6=0的一个根为2,求它的另一个根及k的值.分析:根据一元二次方程的两根与系数之间的关系可求.解:设方程的另一个根是x1,那么2x1=-6/5∴x1=-3/5

  又x1+2=-k/5∴k=-74.已知一元二次方程x2-6x-5=0的两根为a、b,则1/a+1/b的值是多少?解:∵a,b是一元二次方程的两根,∴a+b=6,ab=-5,

  5.已知方程x2-4x-1=0有两个实数根x1,x2,要求不解方程,求值:(1)(x1+1)(x2+1)(2)x2x1+x1x2解:x1+x2=-b/a=4;x1x2=c/a=-1,(1)(x1+1)(x2+1),=x1x2+x1+x2+1,=-1+4+1=4;

  6.已知x,y均为实数,且满足关系式x2-2x-6=0,y2-2y-6=0,求x/y+y/x的值.解:当x≠y时,∵x、y满足关系式x2-2x-6=0,y2-2y-6=0,∴x、y是z2-2z-6=0的两根,∴x+y=2,xy=-6,

  当x,y的值相等时,原式=2.故答案为:-8/3或2.【教学说明】目的是考察学生灵活运用知识解决问题能力,让学生感受到根

  与系数的关系在解题中的运用,同时也考察学生思维的严密性.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题2.4”中第1、2、3题.教学反思此节课在研究方程的根与系数关系时,先从具体例子观察、归纳其规律,并且先从二次项系数是1的方程入手,然后提出二次项系数不是1的,由此,猜想一般的一元二次方程的根与系数关系,最后对此猜想的正确性作出证明.这个全过程对培养学生正确的思考方法很有价值.

  2.5一元二次方程的应用

  第1课时一元二次方程的应用(1)

  教学目标【知识与技能】使学生会用列一元二次方程的方法解应用题.【过程与方法】让学生在经历运用一元二次方程解决一些代数问题的过程中体会一元二次方程的应用价值.【情感态度】在应用一元二次方程的过程中,提高学生的分析问题、解决问题的能力.【教学重点】建立一元二次方程模型解决一些代数问题.【教学难点】把一些代数问题化归为解一元二次方程的问题.教学过程一、情景导入,初步认知列方程解应用问题的步骤是什么?①审题,②设未知数,③列方程,④解方程,⑤答【教学说明】初一学过一元一次方程的应用,实际上是据实际题意,设未知数,列出一元一次方程求解,从而得到问题的解决.但有的实际问题,列出的方程不是一元一次方程,是一元二次方程,这就是我们本节课所研究的问题,一元二次方程的应用.二、思考探究,获取新知1.某省农作物秸秆资源巨大,但合理使用量十分有限,因此该省准备引进适用的新技术来提高秸秆的合理使用率,若今年的使用率为40%,计划后年的使用率达到90%,求这两年秸秆使用率的年平均增长率(假设该省每年产生的秸秆总量不变)分析:由于今年到后年间隔两年,所以问题中涉及的等量关系是:今年的使用率×(1+年平均增长率)2=后年的使用率

  解:设这两年秸秆使用率的年平均增长率为x,则根据等量关系,可列出方程:40%(1+x)2=90%解得:x1=50%,x2=-2.5根据题意可知:x=50%答:这两年秸秆使用率的年增长率为50%.2.为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每瓶零售价由100元降为81元.求平均每次降价的百分率.分析:问题中涉及的等量关系是:原价×(1-平均每次降价的百分率)2=现在的售价解:设平均每次降价的百分率x,则根据等量关系,可列出方程:100(1-x)2=81解得:x1=10%,x2=1.9根据题意可知:x=10%答:平均每次降价的百分率为10%.3.“议一议”运用一元二次方程模型解决实际问题的步骤有哪些?【归纳结论】运用一元二次方程模型解决实际问题的步骤:分析实际问题→建立一元二次方程模型→解一元二次方程→一元二次方程的根的检验→实际问题的解.【教学说明】使学生感受、明白利用一元二次方程解决实际问题的过程与方法.三、运用新知,深化理解1.见教材P50例2.2.一件商品的原价是121元,经过两次降价后的价格为100元.如果每次降价的百分率都是x,根据题意列方程得.【答案】121(1-x)2=1003.某小区2013年屋顶绿化面积为2000平方米,计划2015年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是多少?

  分析:本题需先设出这个增长率是x,再根据已知条件找出等量关系列出方程,求出x的值,即可得出答案.解:设这个增长率是x,根据题意得:2000×(1+x)2=2880解得:x1=20%,x2=-220%(舍去)故答案为:20%.4.某电脑公司2012年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40%,该公司预计2014年经营总收入要达到2160万元,且计划从2012年到2014年,每年经营总收入的年增长率相同,问2013年预计经营总收入为多少万元?解:设每年经营总收入的年增长率为a.列方程,600÷40%×(1+a)2=2160解方程,a1=0.2a2=-2.2,(不符合题意,舍去)∴每年经营总收入的年增长率为0.2则2013年预计经营总收入为:600÷40%×(1+0.2)=600÷40%×1.2=1800答:2013年预计经营总收入为1800万元.5.将进货单价为40元的商品按50元售出时,能卖出500个,已知这种商品每个涨价1元,其销售量就减少10个,若这种商品涨价x元,则可赚得y元的利润.(1)写出x与y之间的关系式;(2)为了赚得8000元利润,售价应定为多少元,这时应进货多少个?解∶(1)商品的单价为50+x元,每个的利润是(50+x)-40元,销售量是500-10x个,则依题意得y=[(50+x)-40](500-10x),即y=-10x2+400x+5000.(2)依题意,得-10x2+400x+5000=8000.整理,得x2-40x+300=0.解得x1=10,x2=30.所以商品的单价应定为50+10=60(元)或50+30=80(元).当商品的单价为60元时,其进货量只能是500-10×10=400(个);当商品

  每个单价为80元时,其进货量只能是500-10×30=200(个).6.“国运兴衰,系于教育”图中给出了我国从1998─2002年每年教育经费投入的情况.(1)由图可见,1998─2002年的五年内,我国教育经费投入呈现出趋势;(2)如果我国的教育经费从2002年的5500亿元,增加到2004年7920亿元,那么这两年的教育经费平均年增长率为多少?

  解:(1)上升或增长.(2)设平均每年增长率为x.依题意,5500(1+x)2=7920解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:这两年的教育经费平均年增长率为20%.【教学说明】进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题2.5”中第1、2题.教学反思《一元二次方程的应用——增长率及利润问题》与我们的生活密切相关,在解决增长率问题时,要弄清关键词语的含义和有关数量间的关系,掌握其规律,还应注意各种数据变化的基础,针对本节课的内容,制作了多媒体教学课件,让学生在探讨、练习中完成所学内容.本节课中,同学们能积极投入到课堂教学中,认真思考、讨论,踊跃发言,

  课堂气氛活跃,在个别问题的回答上,学生大胆发言,配合默契,达到了积极的教学效果.

  第2课时一元二次方程的应用(2)

  教学目标【知识与技能】会建立一元二次方程的模型解决实际问题,并能根据具体问题的实际意义,对方程解的合理性作出解释.【过程与方法】进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力,培养学生用数学的意识.【情感态度】让学生进一步感受一元二次方程的应用价值,提高学生的数学应用意识.【教学重点】应用一元二次方程解决实际问题.【教学难点】从实际问题中建立一元二次方程的模型.教学过程一、情景导入,初步认知复习列方程解应用题的一般步骤:(1)审题:仔细阅读题目,分析题意,明确题目要求,弄清已知数、未知数以及它们之间的关系;(2)设未知数:用字母(如x)表示题中的未知数,通常是求什么量,就设这个量为x;(3)列方程:根据题中已知量和未知量之间的关系列出方程;(4)解方程:求出所给方程的解;(5)检验:既要检验所求方程的解是否满足所列出的方程,又要检验它是否能使实际问题有意义;(6)作答:根据题意,选择合理的答案.

  2.说一说,矩形的面积与它的两邻边长有什么关系?【教学说明】复习相关知识,为本节课的学习作准备.二、思考探究,获取新知1.思考:如图,在一长为40cm,宽为28cm的矩形铁皮的四角截去四个全等的小正方形后,折成一个无盖的长方体盒子,若已知长方体盒子的底面积为364平方厘米,求截去的四个小正方形的边长.

  (1)引导学生审题,弄清已知数、未知数以及它们之间的关系;(2)确定本题的等量关系是:盒子的底面积=盒子的底面长×盒子的底面宽;(3)引导学生根据题意设未知数;(4)引导学生根据等量关系列方程;(5)引导学生求出所列方程的解;(6)检验所求方程的解合理性;(7)根据题意作答.【教学说明】设未知数和作答时都不要漏写单位,多项式时要加括号再写单位.2.如图,一长为32m,宽为20m的矩形地面上修建有同样宽的道路(图中阴影部分),余下部分进行了绿化,若已知绿化面积为540m2,求道路的宽.

  分析:本题考查了一元二次方程的应用,这类题目体现了数形结合的思想,如图,需利用平移把不规则的图形变为规则图形,进而即可列出方程,求出答案.还要注意根据题意考虑根的合理性,从而确定根的取舍.本题可设道路宽为x米,利用平移把不规则的图形变为规则图形,如此一来,所有草坪面积之和就变为了(32-x)(20-x)米2,进而即可列出方程,求出答案.

  解:设道路宽为x米(32-x)(20-x)=540解得:x1=2,x2=50(不合题意,舍去)∴x=2答:设道路宽为2米3.如图所示,在△ABC中,∠C=90°,AC=6cm.BC=8cm,点P沿AC边从点A向终点C以1cm/s的速度移动,同时点Q沿CB边从C向终点B以2cm/s的速度移动,且当其中一点达到终点时,另一点也随之停止移动,问点P、Q出发几秒后,可使△PCQ的面积为9cm2?

  解:设xs后,可使△PCQ的面积为9cm2.由题意得,AP=xcm,PC=(6-x)cm,CQ=2xcm则1/2·(6-x)·2x=9.整理,得x2-6x+9=0,解得x1=x2=3.所以P、Q同时出发,3s后可使△PCQ的面积为9cm2.【教学说明】使学生感受、明白在几何图形中利用一元二次方程解决实际问题的过程与方法.三、运用新知,深化理解1.如图,某中学为方便师生活动,准备在长30m,宽20m的矩形草坪上修两横两纵四条小路,横纵路的宽度之比为3∶2,若使余下的草坪面积是原来草坪面积的四分之三,若横路宽为3xcm,则可列方程为.

  分析:若设小路的横路宽为3xm,则纵路宽为2xm,我们利用“图形经过移动,它的面积大小不会改变”的道理,把纵、横四条路移动一下(目的是求出路面的宽,至于实际施工,仍可按原图的位置修路),则余下的草坪面积可用含x的代数式表示为(30-4x)(20-6x)m2,又由题意可知余下草坪的面积为原草坪面积的四分之三,可列方程.则可列方程:(30-4x)(20-6x)=3/4×30×20【答案】(30-4x)(20-6x)=3/4×30×202.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是()

  A.x2+130x-1400=0B.x2+65x-350=0C.x2-130x-1400=0D.x2-65x-350=0【答案】B3.如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.(1)怎样围才能使矩形场地的面积为750m2?(2)能否使所围矩形场地的面积为810m2,为什么?解:(1)设所围矩形ABCD的长AB为x米,则宽AD为12(80-x)米.依题意,得x·1/2(80-x)=750.即,x2-80x+1500=0,解此方程,得x1=30,x2=50.∵墙的长度不超过45m,∴x2=50不合题意,应舍去.当x=30时,1/2(80-x)=1/2×(80-30)=25,

  所以,当所围矩形的长为30m、宽为25m时,能使矩形的面积为750m2.(2)不能.因为由x·1/2(80-x)=810得x2-80x+1620=0.又∵b2-4ac=(-80)2-4×1×1620=-80<0,∴上述方程没有实数根.因此,不能使所围矩形场地的面积为810m2.4.如图①,在一幅矩形地毯的四周镶有宽度相同的边.如图②,地毯中央的矩形图案长6米、宽3米,整个地毯的面积是40平方米.求花边的宽.

  分析:本题可根据地毯的面积为40平方米来列方程,其等量关系式可表示为:(矩形图案的长+两个花边的宽)×(矩形图案的宽+两个花边的宽)=地毯的面积.解:设花边的宽为x米,根据题意得(2x+6)(2x+3)=40,解得x1=1,x2=-11/2,x2=-11/2不合题意,舍去.答:花边的宽为1米.5.我校原有一块正方形空地,后来在这块空地上划出部分区域栽种花草(如图),原空地一边减少了1m,另一边减少了2m,使剩余的空地面积为12m2,求原正方形的边长.

  分析:本题可设原正方形的边长为xm,则剩余的空地长为(x-1)m,宽为(x-2)m.根据长方形的面积公式方程可列出,进而可求出原正方形的边长.解:设原正方形的边长为xm,依题意有

  (x-1)(x-2)=12整理,得x2-3x-10=0.∴(x-5)(x+2)=0,∴x1=5,x2=-2(不合题意,舍去)答:原正方形的边长5m.6.小明家有一块长8m,宽6m的矩形空地,现准备在该空地上建造一个十字花园(图中阴影部分),并使花园面积为空地面积的一半,小明设计了如图的方案,求图中的x值.

  解:据题意,得(8-x)(6-x)=1/2×8×6.解得x1=12,x2=2.x1不合题意,舍去.∴x=2.【教学说明】进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题2.5”中第3、4、7题.教学反思本节课以学生熟悉的现实生活为问题的背景,让学生从具体的问题情境中抽象出数量关系,归纳出变化规律,并能用数学符号表示,最终解决实际问题.这类注重联系实际考查学生数学应用能力的问题,体现时代性,并且结合社会热点、焦点问题,引导学生关注国家、人类和世界的命运.既有强烈的德育功能,又可以让学生从数学的角度分析社会现象,体会数学在现实生活中的作用.

  3.1比例线段

  3.1.1比例的基本性质教学目标【知识与技能】1.理解比例的基本性质.2.能根据比例的基本性质求比值.3.能根据条件写出比例式或进行比例式的简单变形.【过程与方法】通过例题的学习,培养学生的灵活运用能力.【情感态度】建立初步的空间观念,发展形象思维;并通过有趣的图形,培养学生学习数学的兴趣.【教学重点】比例的基本性质.【教学难点】比例的基本性质及运用.教学过程一、情景导入,初步认知1.举例说明生活中存在大量形状相同,但大小不同的图形.如:照片、放电影中的底片中的图与银幕的像、不同大小的国旗、两把不同大小但都含有30°角的三角尺等.2.美丽的蝴蝶身长与双翅展开后的长度之比约为0.618.一些长方形的画框,宽与长之比也设计成0.618,许多美丽的形状都与0.618这个比值有关.你知道0.618这个比值的来历吗?3.如何求两个数的比值?【教学说明】说明学习本章节的重要意义.二、思考探究,获取新知1.阅读与思考题(1)什么是两个数的比?2与-3的比;-4与6的比.如何表示?其比值相等吗?

  用小学学过的方法可说成什么?可写成什么形式?(2)比与比例有什么区别?(3)用字母a,b,c,d表示数,上述四个数成比例可写成怎样的形式?你知道内项、外项和第四比例项的概念吗?【归纳结论】如果两个数的比值与另两个数的比值相等,就说这四个数成比例.通常我们把a,b,c.d四个实数成比例表示成a∶b=c∶d或比例外项,b,c叫作比例内项.2.如果四个数a、b、c、d成比例,即

  acab,那么吗?反过来呢?bddcac,其中a,d叫作bd

  【教学说明】引导学生利用等式的性质一起证明.由此,你能得到比例的基本性质吗?

  acab,那么.bddcac3.已知四个数a、b、c、d成比例,即:,下列各式成立吗?若成立,bdbdababcd请说明理由.;;.accdbd

  【归纳结论】比例的基本性质:如果

  分析:(1)比较条件和结论的形式得到解题思路;(2)采用设比值较为简单.【教学说明】这三个小题反映了在比例式的变形中的两种常用方法:一是利用等式的基本性质;二是设比值.4.根据下列条件,求a∶b的值.(1)4a=5b,(2)

  ab.78a5.b4

  解:(1)∵4a=5b,∴(2)∵∴

  ab,∴8a=7b,78

  a7.b8

  三、运用新知,深化理解1.已知:x∶(x+1)=(1—x)∶3,求x.

  解:根据比例的基本性质得,

  3.已知a∶b∶c=1∶3∶5且a+2b-c=8,求a、b、c.解:设a=x,则b=3x,c=5x,∴x+2×3x-5x=8,2x=8,x=4,∴a=4,b=3×4=12,c=5×4=20.4.已知x∶y=3∶4,x∶z=2∶3,求x∶y∶z的值.解:因为x∶y=3∶4=6∶8,x∶z=2∶3=6∶9,所以x∶y∶z=6∶8∶9.

  7.操场上有一群学生在玩游戏,其中男生与女生的人数比例是3∶2,后来又有6名女同学参加进来,此时男生与女生人数的比为5∶4,求原来有多少名男生和女生?

  【教学说明】引导学生用比例的性质解决问题.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业∶教材“习题3.1”中第1题.教学反思在处理比例的基本性质前先对比例的项的有关概念进行了讲解,对于比例的内项与外项,我是这样处理的,观察a∶b=c∶d,a,d在比例式的外部,所以称为比例外项,b,c在比例式的内部,所以称为比例内项,这样解释形象直观,学生容易理解.概念教学应该注意讲练结合,通过练习达到对概念的理解.

  3.1.2成比例线段

  教学目标【知识与技能】1.掌握比例线段的概念及其性质.2.会求两条线段的比及判断四条线段是否成比例.3.知道黄金分割的定义,会判断某一点是否为一条线段的黄金分割点.【过程与方法】能够灵活运用比例线段的性质解决问题.【情感态度】感知知识的实际应用,增强对知识就是力量的客观认识,进一步加强理论联系实际的学习方法.【教学重点】能够灵活运用比例线段的性质解决问题.【教学难点】掌握黄金分割的概念,并能解决相关的实际问题.教学过程一、情景导入,初步认知1.1、2、4、8这四个数成比例吗?如何确定四个数成比例?2.比例基本性质是什么?【教学说明】复习回顾,引入新课.二、思考探究,获取新知1.如下图,在方格纸上(设小方格边长为单位1)有△ABC与△A′B′C′,它们的顶点都在格点上,试求出线段AB,BC,AC,A′B′,B′C′,A′C′的长度,并计算AB与A′B′,BC与B′C′,AC与A′C′的长度的比值.

  【教学说明】注意:(1)两线段是几何图形,可用它的长度比来确定;(2)度量线段的长,单位有多种,但求比值必须在同一长度单位下,比值一定是正数,比值与采用的长度单位无关.(3)表示方式与数字的比表示类同,但它也可以表示为AB∶CD.2.什么是比例线段?【归纳结论】在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫作成比例线段,简称比例线段.3.能否将一条线段AB分成不相等的两部分,使较短线段CB与较长线段AC的比等于线段AC与线段AB的比呢?即,使得:

  CBAC.ACAB

  【教学说明】引导学生用一元二次方程的知识解决问题.

  【教学说明】学生通过“计算、证明”等活动,得到并加深对黄金分割的理解.三、运用新知,深化理解1.已知四条线段a、b、c、d的长度,试判断它们是否成比例.

  (1)a=16cm,b=8cm,c=5cm,d=10cm;(2)a=8cm,b=5cm,c=6cm,d=10cm.

  (2)由已知得ab≠cd,ac≠bd,ad≠bc,所以a、b、c、d四条线段不成比例.2.若ac=bd,则下列各式一定成立的是()

  【答案】B3.已知C是线段AB的一个黄金分割点,则AC∶AB为()

  【答案】D

  6.已知a∶b∶c=4∶3∶2,且a+3b-3c=14.(1)求a,b,c;(2)求4a-3b+c的值.

  解:(1)设a=4k,b=3k,c=2k.∵a+3b-3c=14,∴4k+9k-6k=14,∴7k=14,∴k=2,∴a=8,b=6,c=4.(2)4a-3b+c=32-18+4=18.7.在△ABC中,D是BC上一点,若AB=15cm,AC=10cm,且BD∶DC=AB∶AC,BD-DC=2cm,求BC.解:略.8.在比例尺为1︰2000的地图上测得AB两地间的图上距离为5cm,则AB两地间的实际距离为多少米?解:设两地之间的实际距离为x,则:x=5×2000=10000cm=100m9.在人体躯干(脚底到肚脐的长度)与身高的比例上,肚脐是理想的黄金分割点,即比例越接近0.618越给人以美感.张女士的身高为1.65米,身体躯干(脚底到肚脐的高度)为1.00米,那么她应选择约多高的高跟鞋看起来更美.(精确到十分位)

  15,2000x

  10.已知线段AB,求作线段AB的黄金分割点C,使AC>BC.解:作法:(1)延长线段AB至F,使AB=BF,分别以A、F为圆心,以大于等于线段AB的长为半径作弧,两弧相交于点G,连接BG,则BG⊥AB,在BG上取点D,使BD=

  1AB,2

  (2)连接AD,在AD上截取DE=DB,(3)在AB上截取AC=AE.如图,点C就是线段AB的黄金分割点.

  【教学说明】通过例题分析使学生进一步理解比例线段的应用和黄金分割的意义.使学生能更好地掌握本节知识.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业∶教材“习题3.1”中第2、3、4题.教学反思在学习本节内容之前,学生已理解比例线段的性质,初步掌握了比例线段在几何中的应用.本节课学习的黄金分割是一个新的概念,学生缺少这方面知识的积累,因此教学中在内容选择上,充分利用网络资源,选用大量图文作为背景,通过建筑、艺术、生活中的实例了解黄金分割,体现数学丰富的文化价值.同时,在应用中进一步理解线段的比、成比例线段等相关内容,在实际操作、思考、交流等过程中增强学生的实践意识.这节课的不足之处是教学内容比较多,因为时间关系,有关黄金分割的相关计算和应用学生练习得比较少,部分学生对这种类型的题目掌握不好.另外学生对黄金分割点的证明理解还不到位.

  3.2平行线分线段成比例

  教学目标【知识与技能】在理解的基础上掌握平行线分线段成比例定理和三角形一边平行线的性质与判定定理,并会灵活应用.会做已知线段成已知比的作图题.【过程与方法】通过学习定理再次锻炼类比的数学思想,能把一个稍复杂的图形分成几个基本图形,通过应用锻炼识图能力和推理论证能力.【情感态度】通过定理的学习知道认识事物的一般规律是从特殊到一般,并能欣赏数学表达式的对称美.【教学重点】定理的应用.【教学难点】定理的推导证明.教学过程一、情景导入,初步认知1.求出下列各式中的x∶y.

  【教学说明】其中第1题以学生分别口答、共同核对的方式进行;第2、3题以学生各自解答,指定2人板演,而后共同核对板演所述,并以追问理论根据

  的方式进行.二、思考探究,获取新知1.下图是一架梯子的示意图,由生活常识可以知道:AA1,BB1,CC1,DD1互相平行,且若AB=BC,则A1B1=B1C1,由此可以猜测:若两条直线被一组平行线所截,如果在其中一条直线上截得的线段相等,那么在另一条直线上截得的线段也相等,这个猜测是真的吗?

  2.如图,已知直线a∥b∥c,直线l1、l2被直线a、b、c截得的线段分别为AB、BC和A1B1、B1C1,且AB=BC.你能证明A1B1=B1C1吗?

  【教学说明】引导学生分析问题,作出辅助线,再写出证明过程.【归纳结论】两条直线被一组平行线所截,如果在其中一条直线上截得的线段相等,那么在另一条直线上截得的线段也相等.3.如图,任意画直线l1、l2,再画三条与其相交的平行线a、b、c.分别度量l1、l2被直线a、b、c截得的线段AB、BC、A1B1、B1C1的长度.

  ABAB与11相BCB1C1

  等吗?任意平移直线c,再度量AB、BC、A1B1、B1C1的长度,等吗?

  ABAB与11还相BCB1C1

  【教学说明】引导学生进行分析,说出理由.由此,你能得到什么结论?【归纳结论】两条直线被一组平行线所截,所得的对应线段成比例.4.如图,在△ABC中,已知DE∥BC,则

  ADAEADAE和成立吗?为DBECABAC

  什么?由此,你能得到什么结论?

  【归纳结论】平行于三角形一边的直线截其他两边,所得的对应线段成比例.【教学说明】引导学生初步总结出平行线分线段成比例定理及推论,然后师生共同归纳得出定理并板书定理.三、运用新知,深化理解1.见教材P71例题.

  3.如图,在△ABC中,若BD∶DC=CE∶EA=2∶1,AD和BE交于F,则AF∶FD=___.

  【答案】3∶4

  4.如图,在△ABC中,D、E分别在BC、AC上,且DC∶BD=3∶1,AE∶EC=2∶1,AD与BE交于F,则AF∶FD=______.

  【答案】8∶15.如图所示,AD∥EG∥BC,AD=6,BC=9,AE∶AB=2∶3.求GF的长.

  6.已知,如图,AD∥EF∥BC,BE=3,AE=9,FC=2.求DF的长.

  7.如图,已知AB∥EF∥CD,AF=3,AD=5,CE=3,求BE的长.分析:连接AE并延长交CD于G,根据平行线分线段成比例定理,可得AF∶AD=AE∶AG,从而求出AE∶EG,再据平行线分线段成比例定理,可得BE∶EC=AE∶EG,计算可得BE的值.

  【教学说明】通过本例题分析使学生进一步理解定理.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业∶教材“习题3.2”中第1、2、4题.教学反思对于本节课的学习,学生还是要以探索归纳,动手练习为主.既要复习知识点,更重要的是要在复习的过程中不断提高学生用数学解决问题的能力.

  3.3相似图形

  教学目标【知识与技能】1.了解相似三角形、多边形的概念和性质.2.会用相似多边形的性质解决简单的几何问题.【过程与方法】了解相似的概念,能按要求作出简单图形的相似图形.【情感态度】在探索的学习过程中感受成功,建立自信,体验数学学习活动充满着探索与创造,交流与合作的乐趣.【教学重点】相似多边形的定义和性质.【教学难点】判断两个多边形是否相似.教学过程一、情景导入,初步认知

  1.你能看出下例两组图片的共同之处吗?2.你还记得全等的图形吗?说一说全等的图形和形状相同的图形之间有什么联系与区别!【教学说明】通过对生活中形状相同的图形的观察和欣赏,初步感受相似.

  二、思考探究,获取新知1.上面两组图片,它们分别是由其中的一幅图放大或缩小得到的,把一个图形放大或缩小得到的图形与原图形之间有什么关系呢?【归纳结论】把一个图形放大(或缩小)得到的图形与原图形是相似的.2.你能列举生活中,有哪些图形是相似的呢?3.如图,在方格纸内先任意画一个△ABC,然后画出△ABC经某一相似变换(如放大或缩小若干倍)后得到像△A′B′C′(点A′、B′、C′分别对应点A、B、C).

  问题讨论1:△A′B′C′与△ABC对应角之间有什么关系?问题讨论2:△A′B′C′与△ABC对应边之间有什么关系?【归纳结论】我们把三个角对应相等,且三条边对应成比例的两个三角形叫作相似三角形.4.相似三角形的表示方法.表示:相似用符号“∽”来表示,读作“相似于”,如△A′B′C′与△ABC相似,记作“△A′B′C′∽△ABC”.5.相似三角形对应边的比叫作相似比.如果△ABC与△A′B′C′的相似比为k,则△A′B′C′与△ABC相似比为对应角相等,对应边成比例.6.如图:四边形A1B1C1D1是四边形ABCD经过相似变换所得的,请分别求出这两个四边形的对应边的长度,并分别量出这两个四边形各个内角的度数,然后与你的同伴议一议:这两个四边形的对应角之间有什么关系?对应边之间有什么关系?

  1.由此,我们可以得到相似三角形的k

  【归纳结论】对于两个边数相同的多边形,如果它们的对应角相等,对应边成比例,那么这两个多边形叫作相似多边形.相似多边形的对应边的比叫作相似比.相似多边形的对应角相等,对应边成比例.【教学说明】本节课要说明两个相似多边形,应结合定义说明理由,也就是说要同时满足对应角相等,对应边成比例;但要说明不相似,则只要否定其中一个条件即可.三、运用新知,深化理解1.下列每组图形的形状相同,它们的对应角有怎样的关系?对应边呢?(1)正三角形ABC与正三角形DEF;(2)正方形ABCD与正方形EFGH.分析:(1)由于正三角形每个角等于60°,所以∠A=∠D=60°,∠B=∠E=60°,∠C=∠F=60°.由于正三角形三边相等,所以AB∶DE=BC∶EF=CA∶FD.(2)由于正方形的每个角都是直角,所以∠A=∠E=90°,∠B=∠F=90°,∠C=∠G=90°,∠D=∠H=90°,由于正方形的四边相等,所以AB∶EF=BC∶FG=CD∶GH=DA∶HE.解:各对应角相等、各对应边成比例.2.两个相似多边形,其中一个多边形的周长和面积分别是10和8,另一个多边形的周长为25,求另一个多边形的面积.分析:利用相似多边形的对应边的比相等,对应角相等可得.解:两个相似多边形,周长的比等于相似比,因而相似比是10∶25=2∶5,而面积的比等于相似比的平方,设另一个多边形的面积是x,则8∶x=(2∶5)2,解得:x=50,另一个多边形的面积是50.

  3.两个相似的五边形,一个各边长分别为1,2,3,4,5,另一个最大边长为10,求后一个五边形的最短边的长.分析:根据相似多边形的对应边的比相等可得.解:两个相似的五边形,最长的边是5,另一个最大边长为10,则相似比是5∶10=1∶2,根据相似五边形的对应边的比相等,因而设后一个五边形的最短边的长为x,则1∶x=1∶2,解得:x=2,后一个五边形的最短边的长为2.4.设四边形ABCD与四边形A1B1C1D1是相似的图形,且A与A1、B与B1、C与C1、D与D1是对应点,已知AB=12,BC=18,CD=18,AD=9,A1B1=8,则四边形A1B1C1D1的周长为.分析:四边形ABCD与四边形A1B1C1D1是相似的图形,则根据相似多边形对应边的比相等,就可求得A1B1C1D1的其它边的长,就可求得周长.

  5.如图,四边形ABCD∽四边形A′B′C′D′,则∠1=____,AD=______.

  分析:四边形ABCD∽四边形A′B′C′D′,则∠1=∠B=70°,

  解得AD=28,∠1=70°.【答案】70°28【教学说明】通过例题分析使学生进一步理解相似多边形的有关知识.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题3.3”中第1、2、3题.教学反思本节课主要是相似多边形的定义,这节课主要是让学生自学,将定义和相似比等概念进行理解记忆,通过与相似三角形的定义的对比,得到要理解相似多边形的概念,要从以下几方面入手:(1)两个多边形相似,必须具备两个条件:①各角对应相等;②各边对应成比例,这两个条件缺一不可;(2)在相似多边形中,对应相等的角是对应角,对应成比例的边是对应边;(3)两多边形相似用“∽”表示,读作“相似于”;(4)形状相同的多边形相似.在这里,初学者因为有相似三角形的基础,往往在判定两个多边形相似时出现只说明满足一个条件便下结论是相似多边形的错误.另外在用符号表示两个多边形相似时,要把表示对应角的顶点写在对应位置上,这样可以一目了然地知道它们的对应角和对应边.

  3.4相似三角形的判定与性质

  3.4.1相似三角形的判定

  第1课时相似三角形的判定(1)

  教学目标【知识与技能】经历三角形相似的判定定理“平行于三角形的一边的直线与其它两边相交,截得的三角形与原三角形相似”和“两角分别相等的两个三角形相似”的探索及证明过程.【过程与方法】让学生经历观察、实验、猜想、证明的过程,培养学生提出问题、分析问题、解决问题的能力.【情感态度】通过学生积极参与,激发学生学习数学的兴趣,体验数学的探索与创造的快乐.【教学重点】三角形相似的判定定理及应用.【教学难点】三角形相似的判定定理及应用.

  教学过程一、情景导入,初步认知现有一块三角形玻璃ABC,不小心打碎了,只剩下∠A和∠B比较完整.如果用这两个角去配制一块完全一样的玻璃,能成功吗?【教学说明】选择以旧孕新为切入点,创设问题情境,引入新课.二、思考探究,获取新知1.在△ABC中,D为AB上任意一点,过点D作BC的平行线DE,交AC于点E.(1)△ADE与△ABC的三个角分别相等吗?(2)分别度量△ADE与△ABC的边长,它们的边长是否对应成比例?(3)△ADE与△ABC之间有什么关系?平行移动DE的位置,你的结论还成立吗?【归纳结论】平行于三角形的一边的直线与其他两边相交,截得的三角形与原三角形相似.2.如图,D、E分别是△ABC的AB与AC边的中点,求证:△ADE与△ABC相似.证明:∵D、E分别是△ABC的AB与AC边的中点,∴DE∥BC,∴△ADE∽△ABC.3.任意画△ABC与△A′B′C′,使∠A′=∠A,∠B′=∠B.(1)∠C′=∠C吗?(2)分别度量这两个三角形的边长,它们是否对应成比例?(3)把你的结果与同学交流,你们的结论相同吗?由此你有什么发现?【教学说明】此时,教师鼓励学生大胆猜想,得出命题.如果学生还能从不同角度研究,或许还有新的方法进行证明,要大胆鼓励.【归纳结论】两角分别相等的两个三角形相似.4.如图,在△ABC中,∠C=90°,DE⊥AB于E,DF⊥BC于F.求证:△DEH∽△BCA.

  证明:∵DE⊥AB,DF⊥BC,∴∠D+∠DHE=∠B+∠BHF=90°,而∠BHF=∠DHE,∴∠D=∠B,又∵∠HED=∠C=90°,∴△DEH∽△BCA.三、运用新知,深化理解1.见教材P78例2、P80例4.2.判断题:(1)有一个锐角对应相等的两个直角三角形相似.()(2)所有的直角三角形都相似.()(3)有一个角相等的两个等腰三角形相似.()(4)顶角相等的两个等腰三角形相似.()【答案】(1)√;(2)×;(3)×;(4)√3.如图:点G在平行四边形ABCD的边DC的延长线上,AG交BC、BD于点E、F,则△AGD∽_____∽____.解析:关键是找“角相等”,除已知条件中已明确给出的以外,还应结合具体的图形,利用公共角、对顶角及由平行线产生的一系列相等的角.本例除公共角∠G外,由BC∥AD可得∠1=∠2,所以△AGD∽△EGC.再∠1=∠4(对顶角),由AB∥DG可得∠3=∠G,所以△EGC∽△EAB.【答案】△EGC△EAB4.已知:在△ABC和△DEF中,∠A=40°,∠B=80°,∠E=80°,∠F=60°.求证:△ABC∽△DEF.

  证明:∵在△ABC中,∠A=40°,∠B=80°,∴∠C=180°-∠A-∠B

  =180°-40°-80°=60°,∵在△DEF中,∠E=80°,∠F=60°,∴∠B=∠E,∠C=∠F,∴△ABC∽△DEF.(两角对应相等,两三角形相似)5.已知△ABC中,AB=AC,∠A=36°,BD是角平分线,求证:△ABC∽△BCD.分析:证明相似三角形应先找相等的角,显然∠C是公共角,而另一组相等的角则可以通过计算来求得.借助于计算也是一种常用的方法.证明:∵∠A=36°,△ABC是等腰三角形,∴∠ABC=∠C=72°,又BD平分∠ABC,则∠DBC=36°,在△ABC和△BCD中,∠C为公共角,∠A=∠DBC=36°,∴△ABC∽△BCD.6.已知:如图,在Rt△ABC中,CD是斜边AB上的高.求证:△ACD∽△ABC∽△CBD.证明:∵∠A=∠A,∠ADC=∠ACB=90°,∴△ACD∽△ABC,(两角对应相等,两三角形相似)同理△CBD∽△ABC,∴△ABC∽△CBD∽△ACD.【教学说明】学生在独立思考的基础上,小组讨论交流,让学生随时展示自己的想法.从而得到提高.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业

  布置作业:教材“习题3.4”中第2题.教学反思通过这节课的教学,绝大多数学生能运用本节课所学的知识进行相关的计算和证明;少数学生在探究两个三角形相似的定理时,不会用学过的知识进行证明.

  3.4.2相似三角形的性质

  教学目标【知识与技能】理解掌握相似三角形对应线段(高、中线、角平分线)及相似三角形的面积、周长比与相似比之间的关系.【过程与方法】对性质定理的探究,学生经历观察——猜想——论证——归纳的过程,培养学生主动探究、合作交流的习惯和严谨治学的态度.【情感态度】在学习和探讨的过程中,体验从特殊到一般的认知规律.【教学重点】相似三角形性质的应用.【教学难点】相似三角形性质的应用.教学过程一、情景导入,初步认知1.什么叫相似三角形?相似比指的是什么?2.全等三角形是相似三角形吗?全等三角形的相似比是多少?3.相似三角形的判定方法有哪些?【教学说明】复习相关知识,为本节课的学习做准备.二、思考探究,获取新知1.根据相似三角形的概念可知相似三角形有哪些性质?【归纳结论】相似三角形的基本性质:相似三角形的对应角相等,对应边成比例.

  2.如图,△ABC和△A′B′C′是两个相似三角形,相似比为k,其中,AD、A′D′分别为BC、B′C′边上的高,那么,AD和A′D′之间有什么关系?

  证明:∵△ABC∽△A′B′C′,∴∠B=∠B′,又∵AD⊥BC,A′D′⊥B′C′,∴∠ADB=∠A′D′B′=90°,∴△ABD∽△A′B′D′,∴AB︰A′B′=AD︰A′D′=k.你能得到什么结论?【归纳结论】相似三角形对应边上的高的比等于相似比.3.如图,△A′B′C′和△ABC是两个相似三角形,相似比为k,求这两个三角形的角平分线A′D′与AD的比.

  解:∵△A′B′C′∽△ABC,∴∠B′=∠B,∠A′B′C′=∠ABC,∵A′D′,AD分别是△A′B′C′与△ABC的角平分线,∴∠B′A′D′=∠BAD,∴△A′B′D′∽△ABD.(有两个角对应相等的两个三角形相似)∴

  ADAB=kADAB

  根据上面的探究,你能得到什么结论?【归纳结论】相似三角形对应角平分线的比等于相似比.4.在上图中,如果AD、A′D′分别为BC、B′C′边上的中线,那么,AD和A′D′之间有什么关系?你能证明你的结论吗?

  【归纳结论】相似三角形对应边上的中线的比等于相似比.5.如图△ABC∽△A′B′C′,ABA′B′=k,AD、A′D′为高线.(1)这两个相似三角形周长比为多少?(2)这两个相似三角形面积比为多少?

  分析:(1)由于△ABC∽△A′B′C′,所以AB︰A′B′=BC︰B′C′=AC︰A′C′=k.由并比的性质可知,(AB+BC+AC)︰(A′B′+B′C′+A′C′)=k.(2)由题意可知,因为△ABD∽△A′B′D′,所以AB︰A′B′=AD︰A′D′=k.因此可得,△ABC的面积︰△A′B′C′的面积=(AD·BC)︰(A′D′·B′C′)=k2.【归纳总结】相似三角形的周长比等于相似比,面积比等于相似比的平方.【教学说明】通过这两个问题,引导学生通过合情推理,得出结论.学生可以通过合作交流,找出解决问题的方法.三、运用新知,深化理解1.见教材P86例9、P88例11、例12.2.已知△ABC∽△A′B′C′,BD和B′D′是它们的对应中线,且

  AC3=,B′D′=4,则BD的长为____.AC2

  分析:因为△ABC∽△A′B′C′,BD和B′D′是它们的对应中线,根据对应中线的比等于相似比,

  【答案】63.在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D,如果△ABC的周长是16,面积是12,那么△DEF的周长、面积依次为()A.8,3B.8,6C.4,3D.4,6

  分析:根据相似三角形周长比等于相似比,面积比等于相似比的平方可得周长为8,面积为3,所以选A.【答案】A4.已知△ABC∽△A′B′C′且S△ABC∶S△A′B′C′=1∶2,则AB∶A′B′=_____.分析:根据相似三角形面积的比等于相似比的平方可求AB∶A′B′=1∶

  2.

  【答案】1∶25.把一个三角形改做成和它相似的三角形,如果面积缩小到原来的边长应缩小到原来的_____.分析:根据面积比等于相似比的平方可得相似比为

  2.22,所2

  1,那么2

  以边长应缩小到原来的

  22

  【答案】

  6.如图,CD是Rt△ABC的斜边AB上的高.(1)则图中有几对相似三角形;(2)若AD=9cm,CD=6cm,求BD;(3)若AB=25cm,BC=15cm,求BD.解:(1)∵CD⊥AB,∴∠ADC=∠BDC=∠ACB=90°.在△ADC和△ACB中,∠ADC=∠ACB=90°,∠A=∠A,∴△ADC∽△ACB,同理可知,△CDB∽△ACB.∴△ADC∽△CDB.所以图中有三对相似三角形.

  7.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.

  (1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.(1)证明:∵在梯形ABCD中,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,∴△CDF∽△BGF.(2)由(1)知△CDF∽△BGF,又F是BC的中点,∴BF=FC,∴△CDF≌△BGF,∴DF=FG,CD=BG.又∵EF∥CD,AB∥CD,∴EF∥AG,得2EF=AB+BG.∴BG=2EF-AB=2×4-6=2,∴CD=BG=2cm.8.已知△ABC的三边长分别为5、12、13,与其相似的△A′B′C′的最大边长为26,求△A′B′C′的面积S.分析:由△ABC的三边长可以判断出△ABC为直角三角形,又因为△ABC∽△A′B′C′,所以△A′B′C′也是直角三角形,那么由△A′B′C′的最大边长为26,可以求出相似比,从而求出△A′B′C′的两条直角边长,再

  求得△A′B′C′的面积.解:设△ABC的三边依次为:BC=5,AC=12,AB=13,∵AB2=BC2+AC2,∴∠C=90°.又∵△ABC∽△A′B′C′,∴∠C′=∠C=90°.

  又BC=5,AC=12,∴B′C′=10,A′C′=24.

  11∴S=A′C′×B′C′=×24×10=120.22

  (2)已知:两相似三角形对应高的比为3∶10,且这两个三角形的周长差为560cm,求它们的周长.分析:(1)用同一个字母k表示出x,y,z.再根据已知条件列方程求得k的值,从而进行求解;(2)根据相似三角形周长的比等于对应高的比,求得周长比,再根据周长差进行求解.

  【教学说明】通过例题的拓展延伸,体会类比的数学思想,培养学生大胆猜想、勇于探索、勤于思考的习惯,提高分析问题和解决问题的能力.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题3.4”中第6、7、9题.教学反思本节的主要内容是导出相似三角形的性质定理,并进行初步运用,让学生经历相似三角形性质探索的过程,提高数学思考、分析和探究活动的能力,体会相似三角形中的变量与不变量,体会其中蕴涵的数学思想.

  第2课时相似三角形的判定(2)

  教学目标【知识与技能】经历三角形相似的判定定理“两边成比例且夹角相等的两个三角形相似”和“三边成比例的两个三角形相似”的探索及证明过程.【过程与方法】让学生经历观察、实验、猜想、证明的过程,培养学生提出问题、分析问题、解决问题的能力.【情感态度】在合作、交流、探讨的学习氛围中,体验学习的快乐,树立学习的信心.【教学重点】掌握判定定理,会运用判定定理判定两个三角形相似.【教学难点】会准确的运用两个三角形相似的条件来判定两个三角形是否相似.教学过程一、情景导入,初步认知问题:(1)相似三角形的定义是什么?

  三边成比例,三角分别相等的两个三角形相似.(2)判定两个三角形相似,你有哪些方法?方法1:通过定义(不常用);方法2:通过平行线(条件特殊,使用起来有局限性);方法3:判定定理1,两角分别相等的两个三角形相似.【教学说明】引导学生复习学过的知识,承前启后,激发学生学习新知的欲望.

  二、思考探究,获取新知下面我们来探究还可用哪些条件来判定两个三角形相似.1.我们学习了三角形相似的判定定理1,类似于三角形全等的“SAS”判定方法,你能通过类比的方法猜想到三角形相似的其它判定方法吗?2.任意画△ABC与△A′B′C′,使∠A′=∠A,

  ABAC=k.ABAC

  (1)分别度量∠B′和∠B,∠C′和∠C的大小,它们分别相等吗?(2)分别度量BC和B′C′的长,它们的比等于k吗?(3)改变∠A或k的大小,你的结论相同吗?由此你有什么发现?【教学说明】引导学生画图,并鼓励证明命题归纳结论.【归纳结论】两边成比例且夹角相等的两个三角形相似.3.如图,在△ABC与△DEF中,已知∠C=∠

  F,AC=3.5cm,BC=2.5cm,DF=2.1cm,EF=1.5cm.求证:△ABC∽△DEF.

  证明:∵AC=3.5cm,BC=2.5cm,DF=2.1cm,EF=1.5cm,

  又∵∠C=∠F,∴△ABC∽△DEF.4.我们已经学习了三角形相似的2个判定定理,类似于三角形全等的“SSS”判定方法,你能通过类比的方法猜想三角形相似的其他判定方法吗?5.你能证明你的结论吗?已知:如图,在△A′B′C′和△ABC中,

  求证:△A′B′C′∽△ABC.

  【教学说明】引导学生证明.【归纳结论】三边成比例的两个三角形相似.6.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,求证:△ABC∽△A′B′C′.

  ABAC=.ABAC

  分析:已知两边成比例,只需证明三边成比例就可以证明两个三角形相似.可以利用勾股定理来证明.【教学说明】用已学过的知识解题,并通过解题巩固对判定定理的理解.三、运用新知,深化理解1.见教材P82例6、P84例8.2.如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.

  解:(1)△ADE∽△ABC,两角相等;(2)△ADE∽△ACB,两角相等;(3)△CDE∽△CAB,两角相等;(4)△EAB∽△ECD,两边成比例且夹角相等;(5)△ABD∽△ACB,两边成比例且夹角相等;(6)△ABD∽△ACB,两边成比例且夹角相等.3.在△ABC和△A′B′C′中,已知下列条件成立,判断这两个三角形是否相似,并说明理由.(1)AB=5,AC=3,∠A=45°,A′B′=10,A′C′=6,∠A′=45°;(2)∠A=38°,∠C=97°,∠A′=38°,∠B′=45°;(3)AB=2,BC=2,AC=10,A′B′=2,B′C′=1,A′C′=5.解:(1)SAS,相似;(2)AA,相似;(3)SSS,相似.4.如图,BC与DE相交于点O.问(1)当∠B满足什么条件时,△ABC∽△ADE?(2)当AC∶AE满足什么条件时,△ABC∽△ADE?(学生小组合作交流、讨论,教师巡视引导.)

  解:(1)∵∠A=∠A,∴当∠B=∠D时,△ABC∽△ADE.(2)∵∠A=∠A,∴当AC∶AE=AB∶AD时,△ABC∽△ADE.5.如图,在等腰直角三角形ABC中,顶点为C,∠MCN=45°,试说明△BCM∽△ANC.解:∵△ACB是等腰直角三角形,∴∠A=∠B=45°.又∵∠MCN=45°,∠CNA=∠B+∠BCN=45°+∠BCN,∠MCB=∠MCN+∠NCB=45°+∠BCN.∴∠CNA=∠MCB,在△BCM和△ANC中,∠A=∠B∠CNA=∠MCB,∴△BCM∽△ANC.6.如图,已知△ABC、△DEB均为等腰直角三角形,∠ACB=∠EDB=90°,点E在边AC上,CB、ED交于点F.证明:△ABE∽△CBD.证明:∵△ABC、△DEB均为等腰直角三角形,∴∠DBE=∠CBA=45°,∴∠DBE-∠CBE=∠CBA-∠CBE.即∠ABE=∠CBD,又∴△ABE∽△CBD.7.在平行四边形ABCD中,M,N为对角线BD上两点,连接AM交BC于

  EBAB=2,BDBC

  E,连接EN并延长交AD于F.试说明△AMD∽△EMB.解:∵ABCD是平行四边形,∴AD∥BC,∠ADB=∠DBC,∠MAD=∠MEB,∴△MAD∽△MEB.8.如图,已知△ABD∽△ACE,求证:△ABC∽△ADE.分析:由于△ABD∽△ACE,则∠BAD=∠CAE,因此∠BAC=∠DAE,如果再进一步证明ABAD=ACAE,则问题得证.证明:∵△ABD∽△ACE,∴∠BAD=∠CAE.又∵∠BAC=∠BAD+∠DAC,∠DAE=∠DAC+∠CAE,∴∠BAC=∠DAE.∵△ABD∽△ACE,∴

  ABAC.ADAE

  在△ABC和△ADE中,∵∠BAC=∠DAE,A∴△ABC∽△ADE.【教学说明】通过练习,使学生能够综合运用相似三角形的判定定理解决问题.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题3.4”中第1、3、4题.教学反思相似三角形的判定主要介绍了四种方法,从练习的结果来看,不是很理想,绝大部分学生对定理的应用不是很熟练,特别对于"两边对应成比例且夹角相等"

  ABAC,ADAE

  不能灵活运用,夹角也不能准确找到.我想问题的主要原因在于学生对图形的认知不深,对定理的理解不透,一味死记结论.不能理解每个量所表示的含义.我想在下一阶段中应培养他们认识图形的能力,合情推理的能力,争取这方面有所提高.

  3.5相似三角形的应用

  教学目标【知识与技能】能运用相似三角形的性质解决一些简单的实际问题.【过程与方法】通过例题的教学,让学生掌握解决实际问题的方法.【情感态度】进一步检验数学的应用价值.【教学重点】运用相似三角形的性质解决简单的实际问题.【教学难点】运用相似三角形的性质解决简单的实际问题.教学过程一、情景导入,初步认知

  我们已经学习的相似三角形的性质有哪些?1.相似三角形对应角相等.2.相似三角形对应边成比例.3.相似三角形的周长之比等于相似比.4.相似三角形的面积之比等于相似比的平方.5.相似三角形对应边上的高线之比、对应边上中线之比、对应角平分线之比等于相似比.思考:你能够将上面的数学问题转化为生活中的问题吗?【教学说明】复习相似三角形的性质,为本节课的教学作铺垫.二、思考探究,获取新知1.思考:如图,A,B两点分别位于一个池塘的两端.小张想测量出A,B间的距离.但由于受条件限制无法直接测量.你能帮他想出一个可以的测量办法吗?

  【教学说明】由于我们学过三角形的全等,可能有一部分学生会用全等的知识来解决,应当鼓励.并引导学生思考能否用相似的知识来解决这个问题呢.我们可以这样做:如图,在池塘外取一点C,使它可以直接看到A,B两点,连接并延长AC,BC,在AC的延长线上取一点D,在BC的延长线上取一点E,使

  ACBC=k(k为整数)CDEC

  测量出DE的长度后,就可以用相似三角形的有关知识求出A,B两点间的距离了.

  2.根据上面的分析,写出当k=2,DE=50米时,AB的长,并写出解题过程.3.在用步枪瞄准靶心时,要使眼睛O,准星A,靶心B在同一条直线上,在射击时,李明有轻微的抖动,致使准星A偏离到A′.如图所示,已知OA=0.2米,OB=50米,AA′=0.0005米,求李明射击到的点B′偏离靶心B的长度BB′.(AA′∥BB′)

  解:∵AA′∥BB′,∴△OAA′∽△OBB′,

  ∵OA=0.2米,OB=50米,AA′=0.0005米∴BB′=0.125米.【教学说明】鼓励学生大胆的发言,积极讨论,教师作适当的引导、点评.

  三、运用新知,深化理解1.(1)某一时刻树的影长为8米,同一时刻身高为1.5米的人的影长为3米,则树高___米.(2)铁道的栏杆的短臂为OA=1米,长臂OB=10米,短臂端下降AC=0.6米,则长臂端上升BD=___米.

  【答案】(1)4(2)62.如图,已知零件的外径为a,要求它的厚度x,需先求出内孔的直径AB,现用一个交叉卡钳(两条尺长AC和BD相等)去量,若OA∶OC=OB∶OD=n,且量得CD=b,求厚度x.

  分析:如图,要想求厚度x,根据条件可知,首先得求出内孔直径AB.而在图中可构造出相似形,通过相似形的性质,从而求出AB的长度.解:∵OA∶OC=OB∶OD=n且∠AOB=∠COD;∴△AOB∽△COD.∴OA∶OC=AB∶CD=n又∵CD=b,∴AB=CD·n=nb,

  3.如图,△ABC是一块锐角三角形材料,边BC=120毫米,高AD=80毫米,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?

  解:设正方形PQMN是符合要求的,△ABC的高AD与PN相交于点E.设正方形PQMN的边长为x毫米.因为PN∥BC,所以△APN∽△ABC

  AEPN=ADBC80xx=因此得x=48(毫米).80120

  所以

  答:这个正方形零件的边长是48毫米.4.如图是步枪在瞄准时的示意图,从眼睛到准星的距离OE为80cm,步枪上的准星宽度AB为0.2cm,目标的正面宽度CD为50cm,则眼睛到目标的距离OF是多少?

  分析:设眼睛到目标的距离为xcm,由于OE=80cm,AB=0.2cm,CD=50cm,又由于AB∥CD,所以利用相似三角形的性质即可求解.解:设眼睛到目标的距离为xcm,∵OE=80cm,AB=0.2cm,CD=50cm,∴BE=

  11AB=0.1cm,DF=CD=25cm,22

  ∵AB∥CD,∴△OBE∽△ODF,

  解得x=20000.因为20000cm=200m,所以眼睛到目标的距离OF是200m.【教学说明】通过练习,使学生掌握利用相似三角形解决实际问题的方法.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题3.5”中第2、3、5题.教学反思本节课学生在富有故事性和现实性的数学情景问题中学会运用两个三角形相似解决实际问题,在解决实际问题中经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力.在教学中突出了“审题,画示意图,明确数量关系解决问题”的数学建模过程,培养了学生把生活中的实际问题转化为数学问题的能力,利用图形的相似解决一些实际问题(如利用相似测量旗杆的高度).测量某些不能直接度量的物体的高度,是综合运用相似知识的良好机会,通过本节知识的学习,可以使学生综合运用三角形相似的判定和性质解决问题,发展学生的应用意识,加深学生对于相似三角形的理解和认识.一节课下来基本达到了预期目

  标,大部分学生都学会了建立数学模型,利用相似的判定和性质来解决实际问题.

  3.6位似

  教学目标【知识与技能】1.了解图形的位似概念,会判断简单的位似图形和位似中心.2.理解位似图形的性质,能利用位似将一个图形放大或缩小,解决一些简单的实际问题.【过程与方法】采用引导、启发、合作、探究等方法,经历观察、发现、动手操作、归纳、交流等数学活动,获得知识,形成技能,发展思维,学会学习.【情感态度】使学生亲身经历位似图形的概念的形成过程和位似图形性质的探索过程,感受数学学习内容的现实性、应用性.【教学重点】图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小.【教学难点】

  探索位似概念、位似图形的性质的过程及利用位似准确地把一个图形通过不同的方法放大或缩小.教学过程一、情景导入,初步认知1.相似多边形的定义及判定是什么?2.相似多边形有哪些性质?3.我们已学过的图形变换有哪些?它们的性质是什么?【教学说明】分析相关知识,为本节课的教学作准备.二、思考探究,获取新知1.下图是运用幻灯机(点O表示光源)把幻灯片上的一只小狗放映到屏幕上的示意图.

  (1)这两个图形之间有什么关系?(2)在左边小狗的头顶上和狗尾巴尖上分别取点A,B.右边小狗的头顶上和狗尾巴尖上的点A′,B′分别为点A,B的对应点.作直线AA′、BB′,你发现了什么?(3)分别量出线段OA、OA′、OB、OB′的长度,计算(精确到0.1):

  (4)任意在两只小狗上找一些对应点,每一对对应点与点O所连线段的比与上述的值相等吗?【归纳结论】一般地,如果一个图形G上的点A、B、C、„、P与另一个图形G′上的点A′、B′、C′、„、P′分别对应,且满足:(1)直线AA′、BB′、CC′、„、PP′都经过同一点O.

  那么图形G与图形G′是位似图形,这个点O叫作位似中心,常数k叫作位似比.2.在下图中,线段AB与A′B′成位似图形,O是位似中心,你能证明AB∥A′B′吗?

  3.由此,你能得到什么结论?【归纳结论】两个图形位似,则这两个图形不仅相似,而且对应点的连线相交于一点,对应边互相平行.利用位似,可以把一个图形进行放大或缩小.4.如图,在平面直角坐标系中,已知△AOB的顶点坐标分别为A(2,4)、O(0,0)、B(6,0).

  (1)将各个顶点坐标分别缩小为原来的一半.所得到的图形与原图形是位似图形吗?(2)将各个顶点坐标分别扩大为原来的2倍,所得到的图形与原图形是位似图形吗?【教学说明】启发学生自己画,引导学生利用位似图形的性质画位似图形.组织学生讨论位似中心的位置有几种情况并画出图形.【归纳总结】一个多边形的顶点坐标分别扩大或缩小相同的倍数,所得到的图形与原图形是以坐标原点为位似中心的位似图形.在平面直角坐标系中,如果位似图形以坐标原点为位似中心,位似比为k,那么位似图形对应点的坐标的比等于k或-k.画位似图形的方法:方法:1.确定位似中心;2.找对应点;3.连线;4.下结论.

  三、运用新知,深化理解1.见教材P99例题.2.下列说法中正确的是()A.位似图形可以通过平移而相互得到B.位似图形的对应边平行且相等C.位似图形的位似中心不只有一个D.位似中心到对应点的距离之比都相等【答案】D3.如图,五边形ABCDE和五边形A1B1C1D1E1是位似图形,且PA1=则AB∶A1B1等于()

  2PA,3

  【答案】B4.如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为()

  A.(-a,-2b)C.(-2a,-2b)【答案】C

  B.(-2a,-b)D.(-2b,-2a)

  5.如图,火焰的光线穿过小孔O,在竖直的屏幕上形成倒立的实像,像的长度BD=2cm,OA=60cm,OB=15cm,则火焰的长度为______.

  【答案】8cm6.如图,五边形ABCDE与五边形A′B′C′D′E′是位似图形,且位似比为2.若五边形ABCDE的面积为17cm2,周长为20cm,那么五边形A′B′C′D′E′的面积为____,周长为_____.

  【答案】

  172cm4

  10cm

  7.如图,A′B′∥AB,B′C′∥BC,且OA′∶A′A=4∶3,则△ABC与____是位似图形,位似比为_____;△OAB与_____是位似图形,位似比为_____.

  【答案】△A′B′C′7∶4

  △OA′B′

  7∶4

  8.如图:三角形ABC,请你在网格中画出把三角形ABC以C为位似中心放大2倍的三角形.

  【教学说明】通过例题、练习,让学生总结解决问题的方法,以培养学生良好的学习习惯.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.

  课后作业布置作业:教材“习题3.6”中第1、3、4题.教学反思在学习图形的位似概念过程中,让学生用类比的方法认识事物总是互相联系的,温故而知新.而通过“位似图形的性质”的探索,让学生认识事物的结论必须通过大胆猜测、判断和归纳.在分析理解位似图形性质时,加强师生的双边活动,提高学生分析问题、解决问题的能力.

  4.1正弦和余弦第1课时正弦的概念和正弦值的求法

  教学目标【知识与技能】1.使学生理解锐角正弦的定义.2.会求直三角形中锐角的正弦值.3.会用计算器计算任意一个锐角的正弦值.【过程与方法】使学生经历探索正弦定义的过程.逐步培养学生观察、比较、分析、归纳的能力.【情感态度】通过探索、发现,培养学生独立思考、勇于创新的精神和良好的学习习惯.【教学重点】根据定义求锐角的正弦值.【教学难点】探索“在直角三角形中,任意锐角的对边与斜边的比值是一个常数”的过程.教学过程一、情景导入,初步认知1.下图是上海东方明珠电视塔的远景图,你能想办法求出旗杆的高度吗?

  2.学习了本章内容你就能简捷地解决这类问题,本章将介绍锐角三角形函数,它们的本事可大了,可以用来解决实际问题,今天我们来学习第一节“正弦和余弦”.【教学说明】通过实际问题,创设情境,引发学生产生认知盲点,激发学生学习的兴趣和探究的欲望,有利于引导学生进行数学思考.二、思考探究,获取新知1.画一个直角三角形,其中一个锐角为65°,量出65°角的对边长度和斜边长度,计算:65°角的对边/斜边=_______=_______.(1)与同桌和邻桌的同学交流,看看你们计算出的比值是否相等.(2)根据计算的结果,你能得到什么结论?(3)这个结论是正确的吗?(4)若把65°角换成任意一个锐角α,则这个角的对边与斜边的比值是否也是一个常数呢?2.如图,△ABC和△DEF都是直角三角形,其中∠A=∠D=α、∠C=∠F=90°,则BC/AB=EF/DE成立吗?请说出你的证明过程.

  通过我们的证明,这就说明,在有一个锐角等于α的所有直角三角形中,角α的对边与斜边的比值是一个常数,与直角三角形的大小无关.【归纳结论】在直角三角形中,我们把锐角α的对边与斜边的比叫作角α的正弦.记作sinα.3.计算sin30°、sin45°、sin60°的值.

  【教学说明】引导学生利用“30°的角所对的直角边等于斜边的一半”和“勾股定理”进行计算.【归纳结论】sin30°=1/2;sin45°=2/2;sin60°=3/2.4.我们已经知道了三个特殊角(30°、45°、60°)的正弦值,而对于一般锐角α的正弦值,我们应该如何来计算呢?5.利用计算器计算sin50°的值.在计算器上依次按键sin50,则屏幕上显示的就是sin50°的值,6.如果已知正弦值,我们可以利用计算器求出它对应的锐角的度数.例如:已知sinα=0.7071,求α的度数.我们可以依次按键2ndFsin0.7071,则屏幕上显示的就是α的度数.【教学说明】学生先了解计算器各按键的功能,为利用计算器正确求锐角三角函数值打下基础.三、运用新知,深化理解1.见教材P110例1、P113例2.2.在△ABC中,∠A=45°,∠B=60°,a=2,则b等于()A.6B.2C.3D.26

  【答案】A3.计算sin36°=_____.(保留四个有效数字).【答案】0.58784.若sinA=0.1234sinB=0.2135,则A_____B(填<、>、=)解析:根据sin30°=1/2,sin45°=2/2,sin60°=3/2,我们可以发现锐角的度数越大,正弦值越大.【答案】<5.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,(1)求∠A的正弦sinA.(2)求∠B的正弦sinB.分析:先利用勾股定理算出AB的长,再利用正弦的计算方法进行计算.解:(1)∠A的对边BC=3,斜边AB=5,于是sinA=3/5.

  (2)∠B的对边是AC,因此sinB=AC/AB=4/5.6.在Rt△ABC中,如果各边长度都扩大3倍,则锐角A的正弦值()A.不变化C.缩小1/3B.扩大3倍D.缩小3倍

  分析:因为各边值都扩大3倍,所以锐角A的对边与斜边的比值不变.【答案】A7.已知:在△ABC中,∠B=45°,∠C=75°,AC=2,求BC的长.分析:作△ABC的一条高,把原三角形转化成直角三角形,并注意保留原三角形中的特殊角.

  8.求sin63°52′41″的值.(精确到0.0001)解:先用如下方法将角度单位状态设定为“度”:

  所以sin63°52′41″≈0.8979.【教学说明】收集学生在课堂上学习的时候出现的易错点和难点,引导学生查找、分析原因,并且有针对性补充练习,促进提高,由基础慢慢进入到提高,照顾每个层次的学生的能力,提高学生学习数学的积极性和主动性.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业

  布置作业:教材“习题4.1”中第3、4题.教学反思本节课重难点就是对比值的理解,可以从以下几方面着手研究:(1)讨论角的任意性(从特殊到一般),(2)运用相似三角形性质,让学生领悟到:在直角三角形中,对于固定角,无论直角三角形大小怎么样改变,都影响不到其对边与斜边的比值.

  第2课时余弦的概念和余弦值的求法

  教学目标【知识与技能】1.使学生理解锐角余弦的定义.2.会求直三角形中锐角的余弦值.3.会用计算器求一般锐角的余弦值.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.【情感态度】引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.【教学重点】求直三角形中锐角的余弦值.【教学难点】求直三角形中锐角的余弦值.教学过程一、情景导入,初步认知1.什么叫作正弦?2.sin30°、sin45°、sin60°的值分别是多少?【教学说明】对上节课的内容进行复习.

  二、思考探究,获取新知1.如图,△ABC和△DEF都是直角三角形,其中∠A=∠D=α,∠C=∠F=90°,

  则

  成立吗?为什么?

  由此可得,在有一个锐角等于α的所有直角三角形中,角α的邻边与斜边的比值是一个常数,与直角三角形的大小无关.【归纳结论】在直角三角形中,我们把锐角α的邻边与斜边的比叫作角α的余弦.记作cosα.即cosα=角α的邻边/斜边.从上述探究和证明过程看出,对于任意锐角α,有cosα=sin(90°-α),从而有:sinα=cos(90°-α).2.计算cos30°,cos45°,cos60°的值.

  3.我们已经知道了三个特殊角(30°、45°、60°)的余弦值,而对于一般锐角α的余弦值,我们可以用计算器来计算.例如,求cos50°角的余弦值,我们可以在计算器上依次按键则屏幕上显示的就是cos50°的值.4.如果已知余弦值,我们可以利用计算器求出它对应的锐角的度数.例如:已知cosα=0.8661,求α的度数.我们可以依次按键,则屏幕上显示的就是α的度数.【教学说明】学生先了解计算器各按键的功能,为利用计算器正确求锐角三角函数值打下了基础.,

  三、运用新知,深化理解1.见教材P115例4.2.下列说法正确的个数有()

  (1)对于任意锐角α,都有0<sinα<1和0<cosα<1(2)对于任意锐角α1,α2,如果α1<α2,那么cosα1<cosα2(3)如果sinα1<sinα2,那么锐角α1<锐角α2(4)对于任意锐角α,都有sinα=cos(90°-α)A.1个B.2个C.3个D.4个【答案】C3.在△ABC中,∠C=90°,若2AC=2AB,求∠A的度数及cosB的值.分析:利用三角形中边的比值关系,结合三角函数的定义解决问题,注意对特殊角三角函数值的逆向应用.

  4.计算:(1)|-3|-2sin60°+sin45°·cos45°;(2)cos260°+cos245°+2sin30°·sin45°.

  5.用计算器求值(保留四位小数):(1)sin38°19′;(2)cos78°43′16″.解:(1)按MODE,出现:DEG,按sin,38,“.”,19,“.”,=,显示:0.620007287,则结果为0.6200.(2)按MODE,出现:DEG,按cos,78,“.”,43,“.”,16,“.”=,显示:0.195584815,则结果为0.1956.6.若sin40°=cosα,求α的度数.解:∵sin40°=cosα,∴α=90°-40°=50°.7.在Rt△ABC中,∠C=90°,sinB=3/5,求BC/AB的值.解:∵sin2B+cos2B=1,∠B为Rt△ABC的内角,∴cosB=1sin2B=4/5,

  即cosB=BC/AB=4/5.8.正方形网格中,∠AOB如图放置,求cos∠AOB的值.

  解:如图,在OA上取一点E,过点E作EF⊥OB,则EF=2,OF=1,由勾股定理得,OE=5.

  【教学说明】引导学生分析问题,作出辅助线,再写出解答过程.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题4.1”中第6、7、8题.教学反思教学中,我一直比较关注学生的情感态度,对那些积极动脑,热情参与的同学都给予鼓励和表扬,促使学生的情感和兴趣始终保持最佳状态,从而保证施教活动的有效性.在学生“心求通而未得,口欲言而不能”的状态下,适时导出概念,自然而合理,符合新课标的理念.若干年后,或许对余弦概念的表达式已经彻底忘记,但对探索概念的过程,创新意识,数学思想,将深深铭刻在他们的脑海中.

  第3课时正弦和余弦

  教学目标【知识与技能】1.进一步认识正弦和余弦;2.正弦和余弦的综合应用.【过程与方法】通过合作交流,能够根据直角三角形中边角关系,进行简单的计算.【情感态度】经过探索,引导、培养学生观察,分析、发现问题的能力.【教学重点】直角三角形中锐角的正弦、余弦的综合应用.【教学难点】直角三角形中锐角的正弦、余弦的综合应用.教学过程

  一、情景导入,初步认知1.正弦和余弦的定义是什么?2.正弦和余弦之间有什么关系?【教学说明】复习有关知识,为本节课的教学作准备.二、思考探究,获取新知一个小孩荡秋千,秋千链子的长度为2.5m,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01m)

  分析:引导学生自己根据题意画出示意图,培养学生把实际问题转化为数学问题的能力.解:根据题意(如图)可知,∠BOD=60°,OB=OA=OD=2.5m,∠AOD=1/2×60°=30°,∴OC=OD·cos30°=2.5×

  3≈2.165(m).2

  ∴AC=2.5-2.165≈0.34(m).所以,最高位置与最低位置的高度约为0.34m.【教学说明】通过例题的教学,使学生掌握正弦、余弦在具体问题中的应用.三、运用新知,深化理解1.求下列式子的值.

  2.在Rt△ABC中,∠C=90°,BC=6,sinA=3/5,求cosA.

  3.如图,在Rt△ABC中,∠C=90°,cosA=12/13,AC=10,AB等于多少?sinB呢?

  4.已知:如图,CD是Rt△ABC的斜边AB上的高,求证:BC2=AB·BD.(用正弦、余弦函数的定义证明)

  解:在Rt△ABC中,sinA=BC/AB,

  在Rt△BCD中,cosB=BD/BC根据上题中的结论,可知:在Rt△ABC中,sinA=cosB,BC/AB=BD/BC即:BC2=AB·BD.【教学说明】使学生掌握正弦、余弦的综合应用.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题4.1”中第9、10题.教学反思传统教学存在弊端,同时也具有不合理的元素,因此,我的课堂教学特别强调通过情景引导,使学生学会应用知识,通过探究,将学生引向知识深处,在整个过程中体现了教师的主导作用,学生的主体地位.在教学过程中,如何保证每位学生都得到发展,如何给予每个学生以发展平台,这是每位教师在课堂教学中必须做到的.

  4.2正切

  教学目标【知识与技能】使学生了解正切的概念,能够正确地用tanA表示直角三角形(其中一个锐角为∠A)中两直角边的比,熟记30°、45°、60°角的各个三角函数值,会计算含有这三个特殊锐角的三角函数值的式子.【过程与方法】逐步培养学生观察、比较、分析、综合、概括等逻辑思维能力.【情感态度】培养学生独立思考、勇于创新的精神.【教学重点】了解正切的概念,熟记特殊角的正切值.

  【教学难点】正切的应用.教学过程一、情景导入,初步认知1.如图:在Rt△ABC中,∠C=90°,sinA=________;cosA=________.2.当直角三角形的一个锐角的大小确定时,其对边与邻边比值也是唯一确定的吗?【教学说明】巩固复习,同时引入新课.二、思考探究,获取新知1.如图,△ABC和△DEF都是直角三角形,其中∠A=∠D=α,∠C=∠F=90°,则BC/AC=EF/DF成立吗?为什么?

  由此可得,在有一个锐角等于α的所有直角三角形中,角α的对边与邻边的比值是一个常数,与直角三角形的大小无关.【归纳结论】在直角三角形中,我们把锐角α的对边与邻边的比叫作角α的

  正切.记作tanα,即:2.求tan30°、tan45°、tan60°的值.【归纳结论】tan30°=33、tan45°=1、tan60°=3.3.30°、45°、60°的正弦、余弦、正切值分别是多少?【归纳结论】

  【教学说明】通过表格的形式进行归纳,可使学生熟记三角函数值.4.如何用计算器求一般锐角的正切值?例如:求25°角的正切值,可以在计算器上依次按键显示的0.4663„就是25°角的正切值.5.如果已知正切值,我们可以利用计算器求出它对应的锐角的度数.例如:已知tanα=0.8391,求α的度数.我们可以依次按键,则屏幕上显示的就是α的度数.【教学说明】学生先了解计算器各按键的功能,为利用计算器正确求锐角三角函数值打下基础.6.什么是锐角三角函数?【归纳结论】我们把锐角α的正弦、余弦、正切统称为角α的锐角三角函数.三、运用新知,深化理解1.求tan70°45′的值.(精确到0.0001)解:在角度单位状态为“度”的情况下(屏幕显示出D),按下列顺序依次按键:,则屏幕上

  显示结果为2.863560231.所以tan70°45′≈2.8636.2.(1)求下列三角函数值:sin60°,cos70°,tan45°,sin29.12°,cos37°

  42′6″,tan18°31′.(2)计算下列各式:sin25°+cos65°;sin36°·cos72°;tan56°·tan34°解:略3.计算:

  4.在△ABC中,∠C=90°,AB=8,cosA=3/4,求BC的长.分析:首先利用余弦函数的定义求得AC的长,然后利用勾股定理即可求得BC的长.

  5.在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:

  ,其中正确的结论是______.(只需填上正确结论的序号)分析:先根据题意画出图形,再由直角三角形的性质求出各角的度数,由特殊角的三角函数值即可得出结论.∵在Rt△ABC中,∠C=90°,AB=2BC,∴sinA=BC/AB=1/2,故①错误;∴∠A=30°,∴∠B=60°,∴cosB=cos60°=1/2,故②正确;∵∠A=30°,

  ∵∠B=60°,∴tanB=tan60°=3,故④正确.【答案】②③④6.如图,在Rt△ABC中,∠C=90°,∠A=35°,AC=6,求BC,AB的长.(精确到0.001)

  解:因为BC/AC=tanA=tan35°,由计算器求得tan35°≈0.7002,所以BC=AC·tanA≈6×0.7002≈4.201.又AC/AB=cosA=cos35°,由计算器求得cos35°≈0.8192,所以AB=AC/cosA≈7.324.7.如图,工件上有一V型槽,测得它的上口宽20mm,深19.2mm.求V型角(∠ACB)的大小(结果精确到度).

  解:tan∠ACD=AD/CD=10/19.2≈0.5208,∴∠ACD≈27.51°.∴∠ACB=2∠ACD≈2×27.51≈55°.∴V型角的大小约为55°.【教学说明】教师要强调,让每位学生必须动手操作,达到熟练的程度.从而提高学生动手操作能力,巩固所学知识.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补

  充.课后作业布置作业:教材“习题4.2”中第1、2、3题.教学反思三角尺是学生非常熟悉的学习用具,在这节课的教学中,教师应大胆地鼓励学生用所学的数学知识,如“直角三角形中,30°角所对的边等于斜边的一半”的特性,熟记30°、45°、60°角的三角函数值.另外通过小组合作交流形式,让学生积极参与数学活动,对数学产生好奇心,培养学生独立思考问题的习惯,并在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.给学生留充分的时间,采取多种形式让学生记住特殊角的三角函数值.根式化简与负指数的运算易出错.可能会引出新的问题,因此使他们认识到对科学技术的研究将是永无止境的。

  4.3解直角三角形教学

  教学目标【知识与技能】使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的

  两个锐角互余及锐角三角函数解直角三角形.【过程与方法】通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.【情感态度】渗透数形结合的数学思想,培养学生良好的学习习惯.【教学重点】直角三角形的解法.【教学难点】三角函数在解直角三角形中的灵活运用.教学过程一、情景导入,初步认知1.什么是锐角三角函数?2.你知道哪些特殊的锐角三角函数值?【教学说明】通过复习,使学生便于应用.二、思考探究,获取新知1.在三角形中共有几个元素?2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?(1)边、角之间的关系:sinA=∠A的对边/斜边tanA=∠A的对边/∠A的邻边(2)三边之间的关系:a+b=c(勾股定理)(3)锐角之间的关系:∠A+∠B=90°.3.做一做:在直角三角形ABC中,已知两边,你能求出这个直角三角形中其它的元素吗?4.做一做:在直角三角形ABC中,已知一角一边,你能求出这个直角三角形

  222

  cosA=∠A的邻边/斜边

  中其它的元素吗?5.想一想:在直角三角形ABC中,已知两角,你能求出这个直角三角形中其它的元素吗?6.如图,在Rt△ABC中,∠C=90°,∠A=30°,a=5.求∠B、b、c.

  解:∵∠B=90°-∠A=60°,又∵tanB=b/a,∴b=a·tanB=5·tan60°=53.∵sinA=a/c,∴c=a/sinA=5/sin30°=10.【归纳结论】像这样,在直角三角形中,利用已知元素求其余未知元素的过程,叫作解直角三角形.7.在解直角三角形中,两个已知元素中至少有一条边.【教学说明】我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.三、运用新知,深化理解1.见教材P122例2.2.已知在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,c=83,∠A=60°,求∠B、a、b.解:a=csin60°=83·3/2=12,b=ccos60°=83·1/2=43,∠B=30°.

  3.已知在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,a=36,∠A=30°,求∠B、b、c.解:∠B=90°-30°=60°,b=atanB=36·3=92,

  .4.已知在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,c=6-2,a=3-1,求∠A、∠B、b.

  5.已知在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,a=6,b=23,求∠A、∠B、c.解:由于tanA=ab,所以

  则∠A=60°,∠B=90°-60°=30°,且有c=2b=2×23=43.6.在直角三角形ABC中,锐角A为30°,锐角B的平分线BD的长为8cm,求这个三角形的三条边的长.

  解:由已知可得△BCD是含30°的直角三角形,所以CD=1/2BD=1/2×8=4(cm),△ADB是等腰三角形,所以AD=BD=8(cm),则有AC=8+4=12(cm),BC=ACcot60°=12×33=43(cm),AB=(43)2+122=48+144=83(cm).7.如图,在三角形纸片ABC中,∠C=90°,AC=6,折叠该纸片,使点C落在AB边上的D点处,折痕BE与AC交于点E,若AD=BD,则折痕BE的长为多少?

  分析:先根据图形翻折变换的性质得出BC=BD,∠BDE=∠C=90°,再根据AD=BD可知AB=2BC,AE=BE,故∠A=30°,由锐角三角函数的定义可求出BC的长,设BE=x,则CE=6-x,在Rt△BCE中根据勾股定理即可得出BE的长.解:∵△BDE是由△BCE翻折而成,∴BC=BD,∠BDE=∠C=90°,∵AD=BD,∴AB=2BC,AE=BE,∴∠A=30°,在Rt△ABC中,∵AC=6,

  ,设BE=x,则CE=6-x,在Rt△BCE中,∵BC=23,BE=x,CE=6-x,BE2=CE2+BC2,∴x2=(6-x)2+(23)2,解得x=4.

篇七:湘教版九年级上册数学教材分析

  九年级数学上册教材分析

  《义务教育课程标准实验教科书·数学》九年级上册包括二次根式、一元二次方程、

  旋转、圆、概率初步五章内容,学习内容涉及到了《全日制义务教育数学课程标准(实验稿)》

  (以下简称《课程标的四个领域“数与代数”“空间与图形”“统计与概率”“课题学

  习”。

  本书供义务教育九年级上学期使用,全书共需约61课时,具体分配如下:

  第21章二次根式

  约9课时

  第22章一元二次方程

  约13课时

  第23章旋转

  约8课时

  第24章圆

  约17课时

  第25章概率初步

  约14课时

  一、教科书内容安排

  1、二次根式

  学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关

  系有关的问题还会遇到二次根式。“二次根式”一章就来认识这种式子,探索它的性质,掌

  握它的运算。

  2、一元二次方程

  学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到

  一种新方程──一元二次方程。“一元二次方程”一章就来认识这种方程,讨论这种方程的

  解法,并运用这种方程解决一些实际问题。

  3、旋转学生已经认识了平移、轴对称,探索了它们的性质,并运用它们进行图案设计。本书中

  图形变换又增添了一名新成员――旋转。“旋转”一章就来认识这种变换,探索它的性质。

  在此基础上,认识中心对称和中心对称图形。

  4、圆

  圆是一种常见的图形。在“圆”这一章,学生将进一步认识圆,探索它的性质,并用这

  些知识解决一些实际问题。通过这一章的学习,学生的解决图形问题的能力将会进一步提高。

  5、概率初步将一枚硬币抛掷一次,可能出现正面也可能出现反面,出现正面的可能性大还是出现反面的可能性大呢?学了“概率”一章,学生就能更好地认识这个问题了。掌握了概率的初步知识,学生还会解决更多的实际问题。

篇八:湘教版九年级上册数学教材分析

  第1章反比例函数1.1反比例函数

  教学目标

  【知识与技能】理解反比例函数的概念,根据实际问题能列出反比例函数关系式.【过程与方法】经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.【情感态度】培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.【教学重点】理解反比例函数的概念,能根据已知条件写出函数解析式.【教学难点】能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.

  教学过程

  一、情景导入,初步认知1.复习小学已学过的反比例关系,例如:(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?【教学说明】对相关知识的复习,为本节课的学习打下基础.二、思考探究,获取新知探究1:反比例函数的概念(1)一群选手在进行全程为3000米的赛马比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.(2)利用(1)的关系式完成下表:

  (3)随着时间t的变化,平均速度v发生了怎样的变化?

  (4)平均速度v是所用时间t的函数吗?为什么?

  (5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?【归纳结论】一般地,如果两个变量x,y之间可以表示成y=k(k为常数且k≠0)的形式,

  x那么称y是x的反比例函数.其中x是自变量,常数k称为反比例函数的比例系数.

  【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言

  说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:反比例函

  数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t,其中自变量t可以取

  哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根

  据具体情况来确定该反比例函数的自变量取值范围.由于t代表的是时间,且时间不能为负数,所

  有t的取值范围为t>0.

  【教学说明】教师组织学生讨论,提问学生,师生互动.

  三、运用新知,深化理解

  1.见教材P3例题.

  2.下列函数关系中,哪些是反比例函数?(1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数

  关系;

  (2)压强p一定时,压力F与受力面积S的关系;

  (3)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系.

  (4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关系式.分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=k(k是常

  x数,k≠0).所以此题必须先写出函数解析式,后解答.

  解:

  (1)a=12/h,是反比例函数;

  (2)F=pS,是正比例函数;

  (3)F=W/s,是反比例函数;

  (4)y=m/x,是反比例函数.

  3.当

  m

  为何值时,函数

  y=

  4x2m-2

  是反比例函数,并求出其函数解析式.分析:由反比例函数

  的定义易求出m的值.解:由反比例函数的定义可知:2m-2=1,m=3/2.所以反比例函数的

  解析式为y=4.x

  4.当质量一定时,二氧化碳的体积V与密度ρ成反比例.且V=5m3时,ρ=1.98kg/m3

  (1)求p与V的函数关系式,并指出自变量的取值范围.

  (2)求V=9m3时,二氧化碳的密度.

  解:略

  5.已知y=y1+y2,y1与x成正比例,y2与x2成反比例,且x=2与x=3时,y的值都等于19.求y与x间的函数关系式.

  分析:y1与x成正比例,则y1=k1x,y2与x2成反比例,则y2=k2x2,又由y=y1+y2,

  可知,y=k1x+k2x2,只要求出k1和k2即可求出y与x间的函数关系式.

  解:因为

  y1

  与

  x

  成正比例,所以

  y1=k1x;因为

  y2

  与

  x2

  成反比例,所以

  y2=

  k2x2

  +y2,所以

  y=k1x+

  k2x2

  ,当x=2与x=3时,y的值都等于19.

  ,而y=y1

  【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.

  课后作业

  布置作业:教材“习题1.1”中第1、3、5题.

  教学反思

  学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.

  1.2反比例函数的图象与性质第1课时反比例函数的图象与性质(1)

  教学目标

  【知识与技能】1.会用描点法画反比例函数图象;2.理解反比例函数的性质.【过程与方法】观察、比较、合作、交流、探索.【情感态度】通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质.【教学重点】画反比例函数的图象,理解反比例函数的性质.【教学难点】理解反比例函数的性质,并能灵活应用.

  教学过程

  一、情景导入,初步认知你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢?【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质.二、思考探究,获取新知探究1:反比例函数图象的画法画出反比例函数y=6的图象.分析∶画出函

  x数图象一般分为列表、描点、连线三个步骤.

  (1)列表:取自变量x的哪些值?

  x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右均匀,对称地取值.

  (2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(-6,-1)、(-3,-2)、(-2,-3)等.

篇九:湘教版九年级上册数学教材分析

  1.1反比例函数

  1.了解反比例函数的基本概念及确定反比例函数自变量的范围.2.学会根据实际情况确定反比例函数自变量的取值范围.(重点,难点)3.学会利用反比例函数的基本形式建立简单的数学模型.

  一、情境导入你吃过拉面吗?有人能拉到细如发丝,同时还能做到丝丝分明.实际上在做拉面的过程中就渗透着数学知识.

  一定体积的面团做成拉面,面条的总长度与面条的粗细之间有什么关系呢?

  二、合作探究探究点一:反比例函数的相关概念【类型一】反比例函数的识别及比例系数

  下列函数中,哪些一定是反比例函数,若是,写出其比例系数.①y=3x;②y=m2+x1(m为常数);③y=x-32;④y=-6x;⑤y=-4x-1;⑥xy=2.解析:②中m2+1≠0,故y=m2x+1是反比例函数;④中y=-6x是反比例函数;⑤中y=-4x-1=-4x是反比例函数;⑥中xy=2可变形为y=2x,也满足定义.所以②④⑤⑥是反比例函数.①为正比例函数,③中y与x-2成反比例,但y不是x的反比例函数.求比例系数先将其化为y=kx的形式,k即为比例系数.解:一定是反比例函数的有:②④⑤⑥;②y=m2+x1(m为常数)的比例系数为m2+1,④y=-6x的比例系数为-6,⑤y=-4x-1的比例系数是-4,⑥xy=2的比例系数为2.方法总结:(1)辨别一个函数是否为反比例函数,必须具备y=kx(k为常数,k≠0)的形式,且比例系数不为0;(2)反比例函数可写成如下三种形式:①y=kx,②xy=k,③y=kx-1,但

  要注意三种形式中都有k≠0.

  【类型二】根据反比例函数的概念求字母系数的值若函数y=(m+1)xm2-2是反比例函数,求m的值.

  解:由反比例函数的定义可知,m2-2=-1,解得m+1≠0,

  m=1.

  方法总结:反比例函数的基本形式y=kx-1(k≠0,k为常数),解题时k的取值不为0及x项的次数为-1,两个条件缺一不可.

  探究点二:反比例函数自变量的取值范围及函数值已知反比例函数y=-21x.

  (1)写出这个函数自变量的取值范围;(2)求当x=-12时函数的值;(3)求当y=2时自变量x的值.解析:(1)中反比例函数的自变量x位于分母的位置,其取值范围为x≠0,(2)(3)中求函数和自变量的值,分别把已知量代入y=-21x中即可求出结果.解:(1)x≠0;(2)把x=-12代入y=-21x得,y=-2×(1-12)=1.即当x=-12时,函数的值为1;

  (3)当y=2时,-21x=2,解得x=-14.即当y=2时,自变量x的值为-14.方法总结:反比例函数的自变量的取值范围是所有非零实数,但在实际问题中,应该根据具体情况来确定(如例4).

  探究点三:建立简单的反比例函数模型

  如图所示,某学校广场有一段25米长的旧围栏(图中用线段AB表示).现打算利用该围栏的一部分(或全部)为一边建成一块面积为100米2的矩形草坪(图中的矩形CDEF,CD<CF).设所利用的旧围栏CF的长度为x米,新围栏CD的长度为y米.

  (1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若利用旧围栏12米,整修旧围栏的价格为1.75元/米,建新围栏的价格为4.5元/米,则计划修建费用应为多少元?解析:可先利用面积把长与宽表示出来,再写出y与x之间的关系,再利用x=12求出y的值.

  解:(1)∵S矩形CDEF=CD·CF=xy=100,∴y=10x0(10<x≤25).

  (2)由(1)知,当x=12时,y=235.计划修建费用为:1.75x+4.5(x+20x0)=6.25x+90x0=

  6.25×12+91020=150(元).即计划修建费用应为150元.方法总结:解此类题型,首先要理解题意,然后根据已知条件选择合适的数学模型,最

  后根据实际情况确定自变量的取值范围.

  三、板书设计

  定义

  自变量:x≠0

  反比例函数

  y=kx(k≠0).

  形式xy=k(k≠0)

  y=kx-1(k≠0)

  教学过程中,注重引导学生就生活实例展开联想,直观地感受数学的魅力所在.在自主探究和合作交流过程中,适时引入新知识.并通过引导学生建立新的数学模型,开拓思维,提升学生认知能力.

  1.1反比例函数

  一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想

  二、重、难点1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式2.难点:理解反比例函数的概念

  三教学过程:一、创设情景探究问题

  情境1:随着速度的变化,全程所用时间发生怎样的变化?当路程一定时,速度与时间成什么关系?(s=vt)当一个长方形面积一定时,长与宽成什么关系?[说明]这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy=m(m为一个定值),则x与y成反比例。这一情境为后面学习反比例函数概念作铺垫。情境2:汽车从南京出发开往上海(全程约300km),全程所用时间t(h)随速度v(km/h)的变化而变化.问题:(1)你能用含有v的代数式表示t吗?(2)利用(1)的关系式完成下表:

  v/(km/h)608090100120t/h

  (3)速度v是时间t的函数吗?为什么?情境3:用函数关系式表示下列问题中两个变量之间的关系:(1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;(2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y(万元)随还款年限x(年)的变化而变化;(3)游泳池的容积为5000m3,向池内注水,注满水所需时间(th)随注水速度v(m3/h)的变化而变化;(4)实数m与n的积为-200,m随n的变化而变化.问题:(1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同?(2)它们有一些什么特征?(3)你能归纳出反比例函数的概念吗?

篇十:湘教版九年级上册数学教材分析

  第1章反比例函数1.1反比例函数

  教学目标

  【知识与技能】理解反比例函数的概念,根据实际问题能列出反比例函数关系式.【过程与方法】经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.【情感态度】培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.【教学重点】理解反比例函数的概念,能根据已知条件写出函数解析式.【教学难点】能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.

  教学过程

  一、情景导入,初步认知1.复习小学已学过的反比例关系,例如:(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?【教学说明】对相关知识的复习,为本节课的学习打下基础.二、思考探究,获取新知探究1:反比例函数的概念(1)一群选手在进行全程为3000米的赛马比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.(2)利用(1)的关系式完成下表:

  (3)随着时间t的变化,平均速度v发生了怎样的变化?

  (4)平均速度v是所用时间t的函数吗?为什么?

  (5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?【归纳结论】一般地,如果两个变量x,y之间可以表示成y=k(k为常数且k≠0)的形式,

  x那么称y是x的反比例函数.其中x是自变量,常数k称为反比例函数的比例系数.

  【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言

  说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:反比例函

  数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t,其中自变量t可以取

  哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根

  据具体情况来确定该反比例函数的自变量取值范围.由于t代表的是时间,且时间不能为负数,所

  有t的取值范围为t>0.

  【教学说明】教师组织学生讨论,提问学生,师生互动.

  三、运用新知,深化理解

  1.见教材P3例题.

  2.下列函数关系中,哪些是反比例函数?

  (1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数

  关系;

  (2)压强p一定时,压力F与受力面积S的关系;

  (3)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系.

  (4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关系式.分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=k(k是常

  x数,k≠0).所以此题必须先写出函数解析式,后解答.

  解:

  (1)a=12/h,是反比例函数;

  (2)F=pS,是正比例函数;

  (3)F=W/s,是反比例函数;

  (4)y=m/x,是反比例函数.

  3.当

  m

  为何值时,函数

  y=

  4x2m-2

  是反比例函数,并求出其函数解析式.分析:由反比例函数

  的定义易求出m的值.解:由反比例函数的定义可知:2m-2=1,m=3/2.所以反比例函数的

  解析式为y=4.x

  4.当质量一定时,二氧化碳的体积V与密度ρ成反比例.且V=5m3时,ρ=1.98kg/m3

  (1)求p与V的函数关系式,并指出自变量的取值范围.

  (2)求V=9m3时,二氧化碳的密度.

  解:略

  5.已知y=y1+y2,y1与x成正比例,y2与x2成反比例,且x=2与x=3时,y的值都等于19.求y与x间的函数关系式.

  分析:y1与x成正比例,则y1=k1x,y2与x2成反比例,则y2=k2x2,又由y=y1+y2,

  可知,y=k1x+k2x2,只要求出k1和k2即可求出y与x间的函数关系式.

  解:因为

  y1

  与

  x

  成正比例,所以

  y1=k1x;因为

  y2

  与

  x2

  成反比例,所以

  y2=

  k2x2

  +y2,所以

  y=k1x+

  k2x2

  ,当x=2与x=3时,y的值都等于19.

  ,而y=y1

  【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.

  课后作业

  布置作业:教材“习题1.1”中第1、3、5题.

  教学反思

  学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.

  1.2反比例函数的图象与性质第1课时反比例函数的图象与性质(1)

  教学目标

  【知识与技能】1.会用描点法画反比例函数图象;2.理解反比例函数的性质.【过程与方法】观察、比较、合作、交流、探索.【情感态度】通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质.【教学重点】画反比例函数的图象,理解反比例函数的性质.【教学难点】理解反比例函数的性质,并能灵活应用.

  教学过程

  一、情景导入,初步认知你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢?【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质.二、思考探究,获取新知探究1:反比例函数图象的画法画出反比例函数y=6的图象.分析∶画出函

  x数图象一般分为列表、描点、连线三个步骤.

  (1)列表:取自变量x的哪些值?

  x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右均匀,对称地取值.

  (2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(-6,-1)、(-3,-2)、(-2,-3)等.

推荐访问:湘教版九年级上册数学教材分析 上册 九年级 教材

热门文章

2022员工培训学习心得体会范本合集(范文推荐)

最近发表了一篇名为《员工培训学习心得体会范文》的范文,感觉写的不错,希望对您有帮助,为了方便大家的阅读。培训能让员工不断的提高,并清楚的意识到自己的缺点。经过员工培训,你一定有许多的收获,不妨来写一篇员工培训心得。你是否在找正准备撰写“员工培训心得体会范文”,下面小编收集了相关的素材,

冬至精彩优秀作文600字(全文)

最近发表了一篇名为《冬至精彩优秀作文600字【精选六篇】》的范文,好的范文应该跟大家分享,希望对网友有用。在古时候被认为是非常重要的日子,人们甚至将其称之为小年,每年过冬至的时候,都要做好许多准备,民间甚至有诸多的庆祝活动。下面小编在这里为大家精心整理了几篇冬至精彩优秀作文600字,希望对

大一暑假社会实践报告(精选文档)

本页是最新发布的《2022大一暑假社会实践报告》的详细范文参考文章,感觉写的不错,希望对您有帮助,希望大家能有所收获。这个暑假过得是否充实呢,有些小伙伴在假期中参加了实践,那么如何做一份报告呢?下面是小编整理的2022大一暑假社会实践报告,仅供参考,希望能够帮助到大家。2022大一暑假社会

关于珍爱生命作文800字高中【精选推荐】

范文参**网最近发表了一篇名为《2022关于珍爱生命的作文800字高中【】》的范文,感觉写的不错,希望对您有帮助,重新整理了一下发到这里。在平日的学习、工作和生活里,大家都不可避免地要接触到作文吧。下面小编为大家整理了2022关于的作文800字高中【5

《********大宣讲特别节目》直播观后感

最近发表了一篇名为《2022《********大宣讲特别节目》直播观后感【精选】》的范文,感觉写的不错,希望对您有帮助,希望对网友有用。,安全,在学校里,在校外,安全这个词恐怕是再熟悉不过了吧,让将安全铭记心中,时进刻刻都做到安全,让父母不再操心,让长辈不再担心,让安全从我做起,从身边

以小见大作文500字范本(范文推荐)

最近发表了一篇名为《以小见大作文500字范文【精选】》的范文,感觉写的不错,希望对您有帮助,重新编辑了一下发到。一件事情的发生,离不开时间、地点、人物、事情的起因、经过和结果这六方面,即常说的六要素,只有交待清楚这几方面,才能使读者对所叙述的事,有个清楚、全面的了解。这里小编

2022年大学生档案自我鉴定300字10篇

2022年普通大学生个人社会实践实习报告精选服务社会做好思想准备和业务准备,公司内部电脑系统都是统一英文系统,就要求自己以职场……[详细]2022年党员思想汇报例文两篇【完整版】所以在以后的学习和生活中,经历过苦难的中国,工作以及生活中,特别是通过学习党章党纪……[详细]企业员工服务意识培训心得体会

追梦筑梦圆梦演讲稿

最近发表了一篇名为《追梦筑梦圆梦演讲稿》的范文,感觉很有用处,这里给大家转摘到。演讲稿特别注重结构清楚,层次简明。在日新月异的现代社会中,在很多情况下需要用到演讲稿,如何写一份恰当的演讲稿呢?下面是小编为大家整理的追梦筑梦圆梦演讲稿,希望能够帮助到大家!追梦筑梦圆梦演讲稿1尊敬的

建团百周年活动策划

《2022建团百周年活动策划【精选】》是一篇好的范文,感觉很有用处,希望大家能有所收获。党的领导是共青团顺利发展的关键所在,无论是中国早期青年团的建立,还是中国共青团的正式成立,都离不开党的领导。下面小编为大家整理了2022建团百周年策划【精选】的相关内容,以供参考,希望给大家带来帮助!20

2022年度中考优秀作文素材别样美三篇

最近发表了一篇名为《中考优秀作文素材别样的美精选三篇》的范文,好的范文应该跟大家分享,看完如果觉得有帮助请记得(CTRL+D)收藏本页。雨过天晴,花坛边上,几只蜗牛缓缓的爬行着,留下一道彩虹般的痕迹,那柔软的外面,是坚硬的外壳,那也是一道的美丽。下面是小编为大家收集整理的关于素材别样的美精

小学品德教师期末工作总结范本合集

最近发表了一篇名为《小学品德教师期末工作总结范文》的范文,感觉很有用处,重新整理了一下发到这里[http: www fwwang cn]。时光飞逝,如梭之日,回顾这段时间的工作,一定有许多的艰难困苦,是时候在工作总结中好好总结过去的成绩了。下面小编在这里为大家精心整理了几篇小学教师期

2022年度有关安全学习心得合集(2022年)

本页是最新发布的《有关安全学习心得》的详细范文参考文章,感觉很有用处,看完如果觉得有帮助请记得(CTRL+D)收藏本页。有了一些收获以后,可以记录在心得体会中,这么做能够提升的书面表达能力。相信许多人会觉得心得体会很难写吧,下面是小编为大家收集的有关学习心得,供大家参考借鉴,希望可以帮