向量更深入,复数有提升
主 讲:沈新权
浙江省数学特级教师,嘉兴市数学会副会长.
推荐名言
可以用一次的想法是一个诀窍,如果可以用两次以上,那它就成为一种方法了.
——乔治·波利亚 (匈牙利数学家,提出了组合数学的重要工具波利亚计数定理)
向量与复数兼具代数与几何的特征,既能进行代数形式的运算,又能进行几何形式的变换,这种“身份”使它们能作为数学工具,解决函数、几何等多种数学问题.其中,复数还是高等数学中复变函数的基础.因此在自主招生考试中,向量与复数出现的频率比较高.
一、向量问题
例1 (2010年北京大学自主招生考试第4题) ■,■的夹角为θ,■=2,■=1,■=t■,■=(1-t)■,■=f(t)在t=t0时取得最小值. 若0<t0<■,求θ的取值范围.
解析: 设g(t)=■2, ∵ ■,■的夹角为θ,■=2,■=1,又■=■-■=(1-t)■-t■, ∴ g(t)=■2=(5+4cosθ)t2-(2+4cosθ)t+1. ∵ 5+4cosθ>0,∴ g(t)的图象开口向上,g(t)的判别式Δ=16(cos2θ-1)≤0. ∴ g(t)≥0,∴ 当t=t0=■时,■=f(t)取得最小值. 由0<■<■解得-■<cosθ<0, ∴ θ∈■,■.
例2 (2008年南京大学自主招生考试问答题第2题) 在△ABC中任取一点O,用SA,SB,SC分别表示△BOC,△AOC,△AOB的面积,求证:SA·■+SB·■+SC·■=0.
解析:如图1所示,以O为原点、OC所在的直线为x轴建立直角坐标系,设■=x,■=y,■=z,∠AOC=α,∠AOB=β,∠BOC=γ,其中α+β+γ=2π.
SA·■+SB·■+SC·■=■yzsinγ·(xcosα,xsinα)+■xzsinα·[ycos(α+β),ysin(α+β)]+■xysinβ·(z,0)=■xyz[cosαsinγ+sinαcos(α+β)+sinβ],■xyz[sinαsinγ+sinαsin(α+β)].
∵ γ=2π-(α+β), ∴ cosαsinγ+sinαcos(α+β)+sinβ=-cosαsin(α+β)+sinα·cos(α+β)+sinβ=-sinβ+sinβ=0. 又sinαsinγ+sinαsin(α+β)=-sinαsin(α+β)+sinαsin(α+β)=0, ∴ SA·■+SB·■+SC·■=0.
利用例2的结论,我们还可以证明:若△ABC的边长为a,b,c,①当O为△ABC的重心时,■+■+■=0;②当O为△ABC的内心时,a·■+b·■+c·■=0;③当O为△ABC的外心时,sin2A·■+sin2B·■+sin2C·■=0;④当O为△ABC的垂心时,tanA·■+tanB·■+tanC·■=0.
二、复数问题
从代数角度看,解决复数问题的关键是把复数问题实数化.在复数问题实数化时,既可以借助复数的代数形式,也可以利用复数的三角形式,同时还可充分利用共轭复数及复数模的相关性质简化解题过程.从几何角度看,解决复数问题的关键在于合理利用复数运算(加减乘除)的几何意义,减小运算量.
例3 (2008年上海交通大学自主招生考试第4题) 复数z=1,若存在负数a使得z2-2az+a2-a=0,则a= .
解析:要解决例3,同学们须掌握复数z=a+bi的三角形式z=r(cosθ+isinθ) ,其中模r=a2+b2,辐角θ由tanθ=■和θ的终边所在的象限确定.当复数的模为1时,利用复数的三角形式解决问题会相对简单一些.
设z=cosθ+isinθ,则z2-2az+a2-a=cos2θ-2acosθ+a2-a+i(sin2θ-2asinθ)=0,可得cos2θ-2acosθ+a2-a=0 (①),sin2θ-2asinθ=0 (②).由①式得sinθ=0或a=cosθ. 当sinθ=0时,a=■>0,∵ a<0,∴舍去;当a=cosθ时,解得a=■. ∵ a<0, ∴ a=■.
解决例3的关键是利用复数相等的充要条件,把复数问题转化为实数问题来解决.
例4 (2011年“卓越联盟”自主招生考试第4题) i为虚数单位,设复数z满足z=1,则■的最大值为
(A) ■-1(B) 2-■(C) ■+1(D) 2+■
解析:我们先来了解复数加减法的几何意义.
复数加法的几何意义:设复数z1=a+bi, z2=c+di在复平面上所对应的向量为■,■,则■=(a,b),■=(c,d). 以■,■为邻边作平行四边形OZ1ZZ2,则对角线OZ对应的向量■=■+■=(a+c,b+d). ■就是复数z=z1+z2=(a+c)+(b+d)i在复平面上对应的向量.
复数减法的几何意义:设复数z1=a+bi,z2=c+di在复平面上所对应的向量为■,■,则■=■-■=(a-c,b-d). ■就是复数z=z1-z2=(a-c)+(b-d)i在复平面上对应的向量.
如果像例3一样设复数的三角形式,或直接用代数形式求解■,运算量会很大.我们可以先化简■. ∵ ■=■=■=z-(1+i), ∴ 问题转化为求z-(1+i)的最大值. ∵ z=1,∴ 由复数减法的几何意义可知,z-(1+i)的最大值为复平面中单位圆上的点到复数1+i所对应的点的距离的最大值, ∴ ■max=■+1. 选C.
例5 (2003年复旦大学自主招生考试第8题) 已知z1=2,z2=3,z1+z2=4 ,求■.
解析:解决例5时,我们会用到两个知识.一是公式z·■=z2;二是若关于x的一元二次方程ax2+bx+c=0 (a,b,c为实数)的判别式Δ=b2-4ac<0,则方程的根为一对共轭的虚根x=■,韦达定理仍旧成立.
由题意可得z1·■=4,z2·■=9,z1+z22=16=(z1+z2)(■+■)=13+■+■. 令■=z,则9z+■=3,解得z=■±■i, 即■=■±■i.
例6 (2011年“卓越联盟”自主招生考试第10题) 设σ是坐标平面上的点按顺时针方向绕原点作角度为■的旋转,τ表示坐标平面上的点关于y轴的镜面反射.用τσ表示变换的复合,先做τ,再做σ;用σk表示连续k次σ的变换,则στσ2τσ3τσ4是
(A) σ4(B) σ5 (C) σ2τ(D) τσ2
解析:我们先来了解复数的乘除法的几何意义.
复数乘法的几何意义:设复数z1=r1(cosα+isinα),z2=r2(cosβ+isinβ),在坐标系中把复数z1所对应的向量■按逆时针(β>0)或顺时针(β<0)旋转β个角度,并将■的模长伸长(r2>1)或缩短(0<r2<1)到原来的r2倍,由此得到的向量所对应的复数就是z1·z2.
同理,复数除法的几何意义为:把复数z1所对应的向量■按顺时针(β>0)或逆时针(β<0)旋转β个角度,并将■的模长伸长(0<r2<1)或缩短(r2>1)到原来的■倍,由此得到的向量所对应的复数就是■ (z2≠0).
要解决例6,我们先设复平面上的点所对应的复数为z=r(cosθ+isinθ),记σz为复数z对应的点做一次σ变换后得到的点所对应的复数,记τz为复数z对应的点做一次τ变换后得到的点所对应的复数,由复数除法的几何意义可得,σz=rcosθ-■π+isinθ-■π,τz=r[cos(π-θ)+isin(π-θ)],由此可得复数对应的点每次变换后所对应的辐角.根据题中定义的变换规则,στσ2τσ3τσ4后,z所对应的辐角变化依次为θ ■ θ-■π ■ ■π-θ ■ ■π-θ ■ ■π+θ ■ θ-■π ■ ■π-θ ■ ■π-θ. 同理, 经过A、B、C、D选项的变换,复数z对应的点所对应的复数的辐角分别为θ-■π,θ-■π,■π-θ,■π-θ. 选D.
【下期预告】
在自主招生考试中,对数列内容的考查达到了怎样的程度·极限问题的考查重点又在哪里·在下一讲中,我们将就这两个问题展开讨论.
下一篇:基于有限几何的量子CSS码的构造