三年级数学广角集合说课稿集合3篇
《三年级》是2008年5月1日江苏人民出版社出版的图书,作者是金波。1992年获得国际安徒生奖提名, 以下是为大家整理的关于三年级数学广角集合说课稿3篇 , 供大家参考选择。
三年级数学广角集合说课稿3篇
第1篇: 三年级数学广角集合说课稿
数学广角——集合
新区一小 何芸娜
【教学目标】
1.理解集合圈里各部分的意义。
2.会读集合圈中的信息,会按条件填写集合圈。
3.使学生会借助直观图,利用集合的思想方法解决简单的实际问题。
【教学重难点】
1.会读集合圈中的信息,会按条件填写集合圈。
2.使学生会借助直观图,利用集合的思想方法解决简单的实际问题。
【教具准备】PPT课件 姓名卡片
【教学过程】
1、“脑筋急转弯”游戏引入问题
1、从左边数,第三排第4位小朋友站起来,从右边数,第5位小朋友站起来,你们发现了什么?你们猜这排小朋友一共有几人?
(强调站起来的小朋友数了两次,重复了两次)
2、房间里有两个爸爸,两个儿子,但是只有三个人,这是怎么回事?(强调爸爸身份的双重性--身份“重复”了)
师:今天我们一起来研究这些重复的数量,用一种新的方式表示它们(出示课题:数学广角——集合)
2、新授
例题:下表是三(1)班参加跳绳、踢毽比赛的学生名单
问:参加这两项比赛的共有多少人?
生:有17人,9+8=17(人)
引导学生观察名单,看自己准备的姓名卡片,发现“重复”人名。
师:哪三个人?有没有什么办法,能清楚地看出有三人重复呢?
学生思考,教师引导用连线的方法表示,不会找漏掉。
师:现在老师给大家介绍连线的方法。(出示课件)
用表格整理出来:
师:(活动)四人小组,把手上的名片摆一摆,把只参加跳绳的放一边,两项都参加的放一边,只参加踢毽的学生放一边。思考:我们能不能用两个圈清楚的表示这三部分的关系呢?小组讨论。
师出示课件,这些都是跳绳组的,我用一个圈圈起来,遮掉只跳绳的,问这些都是踢毽组的,我再用一个圈圈起来,这个时候你发现了什么?
生:两个圈中间相交了。中间的三个人圈了两次。
师:在数学上,我们把参加跳绳的比赛的学生看作一个整体,叫做一个集合,把参加踢毽比赛的学生看做一个整体,也是一个集合,我们常用这种方法,直观的把集合中的具体事物表示出来,这种图我们把它叫做“维恩图”也叫做“文氏图”。
介绍维恩图。课件出示。
师:中间重叠部分表示什么?整个图表示什么?
(指名说一说每部分表示的是什么,同桌互说。)
跳绳组 踢毽组
跳绳组 踢毽组
两项都参加的
师:参加跳绳和踢毽的同学一共有几人?
参加跳绳的学生有9人,参加踢毽的学生有8人,两项有17人,既参加跳绳又参加踢毽的学生有3人,有3人重复,有几人参加比赛呢?
生:14人,17-3=14(人)(重点介绍)
师引导出公式:参加人数=项目人数和-重复人数
生:6 + 3 + 5 = 14(人)
师:只参加跳绳的学生有几人?只参加踢毽的学生有几人?
生:6人,9-3=6(人) 5人,8-3=5(人)
师引导出公式:只参加一项人数=项目人数-重复人数
师小结:在计算总人数时,要记得找出重复的人数,计算时,要把重复的人数减去。
三、做一做
1、教材P105 1,2
1题,引导学生交集部分表示什么,圈圈每一部分的含义是什么,观察动物,填一填,教师点名板演,找典型更正。
2题,引导学生找出重复人数,根据重复人数算出上榜人数。(点名学生说一说他是怎么算的)
生:数出来的,去除重复人数。
师鼓励,总结重复人数要去除。
3、思考题(难度提升题,此题根据时间可选讲或留课后作业)
1、三年级(1)班的部分同学参加“运动会”,其中参加跳绳比赛的有22人,参加跑步比赛的有28人,两项都参加的有10人,共有多少人参加比赛?
参加人数=项目人数和-重复人数
① 12+13=25(人) ② 25-5=20(人)
答:共有20人参加比赛
2、根据学校要求,每班要选拔9人参加跳绳,8人参加踢毽子比赛,你觉得三(3)班可能会选拔多少人?
判断:
1.参赛的同学最多有17人。( √ )
2.参赛的同学最少有 8人。 ( × )
(课件演示最少人数)
重合1人,参赛的同学有几人?依次推下去,学生数,重合8人参赛的同学有9人。
4、课堂小结
师:今天你们都有什么收获,说说你今天都学到了些什么?
【板书设计】
数学广角——集合
9+8=17(人) 17-3=14(人)
参加人数=项目人数和-重复人数
【教学反思】
第2篇: 三年级数学广角集合说课稿
《数学广角——集合》说课稿
一、说教材
《数学广角——集合》是人教版新课标数学三年级上册第九单元的知识,涉及了学生在生活和学习中经常遇到的问题:求两个集合的并集或交集的元素个数。(集合是比较系统、抽象的数学思想方法,也是数学中最基本的思想。)
本节课教材例1在学生积累了较丰富的学习生活经验的基础上借助学生熟悉的题材,向学生渗透集合的有关思想,使学生理解用直观图(集合圈)表示“重复现象”的方法,了解直观图(集合圈)各部分的意义,特别是重复部分(交集)的意义,掌握根据直观图列式计算总数(两个集合的并集)的方法。这样安排不仅可以提高学生学习的兴趣,激发学生的好奇心,而且还让学生体会到数学知识与生活的密切关联,逐渐学会从数学的角度看待身边的事物。
二、说学情
三年级学生从一年级开始学习数学时就已经在运用集合思想方法了,所以对集合有一定的生活经验和知识基础。例如在数数时,把1个人、2朵花、3枝铅笔用一条封闭的曲线圈起来表示,这样表示出的数学概念更直观、形象;而且在以后学习的平面图形之间的关系都用到了集合的思想,如把一堆图形按照一定的标准分类,这种分类思想就是集合理论的基础。但这些都只是单独的一个集合圈,学生不一定从集合的角度来思考并解决问题。
三、说目标
在设计本节课的教学时,以新课程理念为指导,将数学知识与学生实际生活有机结合,通过预学提示、自主探究、合作交流、操作实践等方式让学生经历数学知识生成的过程,从而达到感悟知识的目标。
基于以上认识,本节课在把握教材意图的基础上,目标定位如下:
1、通过预学观察图表、自主探究和合作交流等活动,让学生经历解决问题的过程,了解简单的集合知识,初步感受集合的意义,获得数学学习的体验。
2、使学生通过理解用直观图(维恩图)表示“重复现象”的方法,学会借助直观图(维恩图)运用集合的思想方法来解决较简单的实际问题,从而感受到数学与生活之间的相互联系。
3、通过课堂教学活动,让学生体验数学的价值,培养学生合作学习的意识和学习的兴趣,提高学生的观察能力、思考能力、创新能力、评价说理能力。
四、说重难点
本节课的重点是让学生感知集合的思想,并能初步运用集合的思想解决简单的实际问题;难点是对重复部分的理解。
五、说设计
1、把自主探究与有意义的接受学习有机结合。
学生对于“重复的人数要减去”是有经验的,因此在充分尊重学生经验认知的基础上,放手让学生先自主探究,独立完成,再汇报交流。配合学生汇报,利用多媒体课件出示维恩图,运用讲授法引导学生认识并理解维恩图,并通过直观演示将两个集合圈合并的过程,引导学生讨论发现“集合中的元素是不能重复出现的”,体会集合元素的互异性;“集合元素的顺序可以不同”,体会集合元素的无序性。并让学生想一想说一说图中每一部分所表示的含义,尤其是“两项都参加的和参加这两项比赛的”,体会交集和并集的含义。
2、放手学生,让学生体会与交、并有关的计算。
学生在列式解答时,根据连线或维恩图,会列出多种方法。放手让学生尝试解决,并充分展示学生的方法,同时给予充分肯定。让学生结合维恩图体会各个算式所表示的含义,体会求“两个集合并集的元素个数”就是要将两个集合的元素个数相加后减去其交集的元素个数。突出基本的方法,加深学生对与交、并有关计算的体会和对集合知识的理解。
3、关注“冲突”,激发学生的探究欲望和兴趣。
提出需要解决的问题“参加这两项比赛的共有多少人?”后,学生的不同答案有可能引发“冲突”。抓住这一“冲突”,追问“你能确定有17人吗?”、“你能证明为什么不是17人吗?”,以此激发学生探究的欲望,让学生积极主动的投入解决问题的活动中去,用个性化的思考和处理问题的方式解决问题,为他们自主构建知识的意义提供保障。
4、培养学生收集、整理信息的意识和能力。
本着从实践中来到实践中去的原则,课堂上通过学生生活实际介绍了用维恩图表示集合及其交、并的方法,让学生亲身感知集合的思想,体验知识生成的过程,在过程中体验集合的思想,在过程中感悟重复,并顿悟重复问题的解决方法。让学生经历问题解决的数学化过程,获得数学学习体验。
5、培养学生思维的严谨严密性。
数学的教学,最重要的不是数学知识的教学,而是数学思维、数学思想方法的教学。数学思想贯穿整个数学体系的始终。所以,从小就给学生渗透一些数学思想是非常必要而且非常重要的。而其中重要的一环就是学生数学思维的严谨性的培养。严谨性是数学学科的基本特征之一。在教学过程,我注重培养学生思维的严谨严密性,如解读韦恩图的过程中,让学生表述各个部分的意思。大圈是表示“参加跳绳人数”和“参加踢毽人数”,而去掉了都参加的部分后是“只参加跳绳人数”和“只参加踢毽人数”,多了一个字“只”,虽然只有一字之差,但是意思完全不一样。还有“既参加跳绳又参加踢毽”让学生明白这是两种活动都参加的。
6、锻炼根据实际情况解决问题的能力。
具体情况,具体分析。课堂最后设计的课后思考题目对学生所学知识灵活运用的能力既是锻炼又是提高。
(四)巩固练习
通过三个练习,分层次的练习达到巩固。
1、基本练习:完成105页的1、2题
﹙1﹚理解集合圈里各部分的意义。会读集合圈中的信息,会按条件填写集合圈。完成105页的1题
﹙2﹚你从图上能很快地看出哪些信息?再算出语数有多少人?
2、解决问题:先分析题意,学生独立完成。再请学生汇报,全班交流。
(五)课堂小结
请学生谈收获,其他学生补充。最后,教师总结全课。
六、课堂上运用课件着重体现的数学思想方法有:
1、课件出示小动物回家,引入课堂,使课堂教学更加高效、生动、活泼。使带有一定强制性的教学过程转变成学生高效的自学,使儿童在小组合作中体验与情感结合起来,学生的学习兴趣高涨,注意力更加集中,思维更加活跃,从而更好地掌握知识、发展技能。
2、培养学生收集、整理信息的意识和能力。集合的抽象性是在它最终形成结论才具有的,而在结论形成过程中,必然以大量的具体内容为基础。本着从实践中来到实践中去的原则,课堂上我们让学生从生活实际中亲身感知集合的思想,并使他们亲身体验集合图的产生过程,让学生在过程中体验集合的思想,在过程中感悟重叠,并领悟重叠问题的解决方法。让学生经历问题解决的数学化过程,获得数学 学习体验。
3、培养学生思维的严密性严谨性是数学学科的基本特征之一。
数学的教学,最重要的不是数学知识的教学,而是数学思维,数学思想方法的教学。数学思想贯穿整个数学体系的始终。所以,从小就给学生渗透一些数学思想是非常必要而且非常重要的。而其中重要的一环就是学生数学思维的严谨性的培养。严谨性是数学学科的基本特征之一。如课件出示韦恩图,引导学生填写、理解的过程中,让学生表述各个部分的意思。课堂上时时注重学生严密的思维。
另外一个体现就是:教学中要注意克服学生的思维定势。能促使学生发现问题,培养学生的质疑精神,长此以往,由质疑进而求异,突破传统观念,大胆创立新说。
根据实际情况解决问题的能力。 谢谢大家!
第3篇: 三年级数学广角集合说课稿
数学广角——集合
学习目标:
1.知识与技能:使学生借助直观图,利用集合的思想方法解决简单的重叠问题,并能用数学语言表述。
2.过程与方法:使学生感知集合图的产生过程,初步培养学生的建模意识和能力,渗透多种方法解决问题的意识。
3.情感态度价值观:培养学生初步养成善于观察、善于思考的学习习惯。
学习重点:利用集合的思想方法解决简单的重叠问题,并能用数学语言表述。
学习难点:初步培养学生的建模意识和能力,渗透多种方法解决问题的意识。
课前准备:课件
导学案设计:
学习过程:
一、创设情景,激趣导入。
1、我想试试同学们反映快不快,请大家猜个脑筋急转弯。两个爸爸和两个儿子去动物园,可是他们只买了三张票,便顺利地进了动物园,这是为什么?
学生活动:学生猜测各种可能性,你一言我一语地发表自己的高见。
大家的猜测都有自己的道理,但答案到底是什么呢?暂时老师还不想告诉你们,我想通过下面的活动,大家一定能自己找到答案的。
二、引导探究发现规律
1、了解运动爱好
同学们平时喜欢体育运动吗?体育运动各种各样,你喜欢什么样的运动?
2、假如学校里要组织活动,一项跑步,一项跳绳,请你选择的话,你喜欢什么运动?我们举举手看,喜欢跑步的有哪些同学?喜欢跳绳的有哪些同学?都很多,有没有两样都比较喜欢的?
3、老师想进一步了解你们,请允许我对你们其中的一个小组进行调查,好吗?看看哪个小组今天的精神面貌最好!
4、老师在讲台的两边分别画了两个圈:左边蓝色的圈表示喜欢跑步的,右边红色的圈表示喜欢跳绳的。
5、【指定小组】现在请喜欢跑步的同学到左边蓝色的圈内集合【有6人,板书:6】;请喜欢跳绳的同学到右边红色的圈内集合【有4人,板书:4】。
6、为了让大家看得更清楚,老师在黑板上画一个表格:
“第?小组喜欢跑步、跳绳学生名单”,请第?小组的同学分别在“跑步”和“跳绳”后面签上名字,两者都喜欢,两边都签。第?小组喜欢跑步、跳绳学生名单
【故作惊讶】喜欢跑步的有6人,喜欢跳绳的有4人,这个小组没有10人呀?问题出在哪儿呢?
【有两个同学既喜欢跑步又喜欢跳绳】
小组讨论发现:统计过程中有同学既喜欢跑步又喜欢跳绳,
是重复的,在计算人数时只能计算一次。
7、看来表格不方便我们统计总人数!
之前,在老师左边蓝色的圈表示的是什么?在老师右边红色的圈表示的是什么?现在,老师让第?小组的同学一起上来,我们看看他们怎么站。请大家拿出纸和笔,在纸上写一写、画一画,看怎样能使别人一看就知道喜欢跑步的有哪些同学,喜欢跳绳的有哪些同学,两样都喜欢的有哪些同学?同时还方便我们数人数?
8、谁愿意展示下你的想法?根据老师所掌握的,在100
多年前的英国,有一个名叫韦恩的逻辑学家,用一个图很方便的解决了我们今天遇到的这个问题。让老师来展示给大家看。蓝色的圈圈住的是什么?【喜欢跑步的同学】红色的圈圈住的是什么?【喜欢跳绳的同学】中间两个圈相交的部分呢?【既喜欢跑步又喜欢跳绳的同学】一共是多少个同学?【8人】
因为是韦恩最早发明的,所以就以他的名字命名这种图,叫韦恩图。老师发现不少同学的想法和韦恩的一样,看来如果我们生的比他早,那就是用你的名字来命了。
9、现在我们知道了可以用韦恩图,既能表示重复的部分,又能方便统计总数。接下来,假如要用算式表示喜欢跑步和跳远的一共有多少人,又该是怎样的呢?
①算法1:6+4-2=8人
你是怎么想的?【先把喜欢跑步的和喜欢跳绳的分别加起来。算式是6+4=10,然后再用10减去两个重复的,10-2=8】
②算法2:4+2+2=8人
请你解释一下。【4是只喜欢跑步的,2是只喜欢跳绳的,
2是既喜欢跑步又喜欢跳绳的,即重复的】
③算法3:6+2=8人【喜欢跑步的4人,加上只喜欢跳绳的2人】
④算法4:4+4=8人【喜欢跳绳的4人,加上只喜欢跑步的4人】
10、刚才同学们想了很多算法,你觉得哪种比较容易理解。把你比较容易理解的那种算法,说给你的同桌听一下,是什么意思?
今天,我们要研究的就是与这有关的一类问题。【板书:数学广角】这节课看谁表现得最好?
三、回归生活,实际运用
1、现在就去大自然看看,它们是谁呀?在这些动物当中有会飞的,会游泳的。找找哪些是会飞的,哪些是会游泳的,你能把它们的序号填到图中合适的位置上吗?【练习二十四,第1题】
只会飞的有哪些?【②④⑦⑧⑩】
只会游泳的有哪些?【①⑤⑥⑨】
③天鹅放哪儿?【放中间】为什么放中间?【它既会飞又会游泳】同意吗?
如果又来了一只小狗,应该把它放在哪呢?【因为它既不会飞也不会游泳】
所以不能放在圈里,只能把它放在哪里?【圈外】
同学们真了不起,没有被这样的问题迷惑住!
2、看图,文具店昨天进了5种货,今天进了5种货,两天一共进了多少种货?【练习二十四,第2题】
四、拓展延伸,升华主题
思考课前引入问题
两个爸爸【板书:2】,两个儿子【板书:2】,却只买了三张票【板书:3】。这2+2怎么会等于3?这里谁的身份最特殊?为什么?【爸爸的身份最特殊,有两个身份,既是爷爷的儿子又是儿子的爸爸。板书:既……又……】
【爸爸有两个身份,重复算了一次,板书:2+2-1=3】
1、三年级有20个同学参加兴趣小组,其中参加数学小组的有15人,参加语文小组的有13人。
(1)既参加数学小组又参加语文小组的有几人?
(2)只参加数学小组的有几人?
(3)只参加语文小组的有几人?
2、水果店昨天进了4种水果,今天进了4种水果,两天可能一共进了几种水果?
五、总结归纳
通过这节课的学习,你有什么收获?
今天我们遇到的数学问题都有什么共同特征?【有重复的】
都通过了什么方法帮助我们解决的?【画韦恩图、列算式计算时减去重复的一次】
上一篇:神舟13号返回地球文章15篇
下一篇:关于事故反思【五篇】