需要修稿部分
下面是小编为大家整理的需要修稿部分,供大家参考。
1.1 指纹识别简介 1.1.1
指纹识别原理 指纹识别技术的原理和其它生物识别技术的原理相似。它是利用人体的指纹特征对个体身份进行区分和鉴定。在所有的生物识别技术中指纹识别技术是目前最为成熟,也被应用最广的生物识别技术。这主要因为指纹采用的过程对人们来讲非常简单,指纹识别的准确率高的原因。严格来讲,指纹识别的原理包括指纹采集原理、指纹特征提取原理和指纹特征匹配原理三大部分。指纹采集原理主要是根据指纹的几何特性或生理特性,通过各种传感技术把指纹表现出来,形成数字化表示的指纹图案。
由于指纹的嵴和峪的几何特征不同,主要表现为嵴是突起的,峪是凹下的,所以在接触到光线时,其反射光的强度也就不同。在接触到平面时,其在平面上形成的压力也就不同。另一方面,由于指纹的嵴和峪的生理特征不同,主要表现为:嵴和峪的温度不同,其导电性也不同,其对波长的反馈也就不同。通过这些几何的、生理的特性的不同,把人的指纹采集到计算机系统中形成指纹图像。
指纹特征分析的原理是对指纹图案的整体特征和细节特征进行提取、鉴别的原理。其分析的对象包括纹形特征和特征点的分布、类型,以及一组或多组特征点之间的平面几何关系。特征点的平面几何关系表现为某个特征点之间的距离等,或者某三个或更多特征点之间组成的多边形的几何特性。不论是特征点的单体特征,还是特征点的组合特征都是指纹特征的组成部分。把这些指纹特征用数字模板的形式表示出来,就实现了一个指纹特征分析的过程。把人的指纹采集到计算机系统中形成指纹图像。
指纹特征值匹配原理是对指纹图案的整体特征和细节特征按模式识别的原理进行比对匹配。匹配是在已注册的指纹和当前待验证的指纹之间进行的。匹配运算不是对两个指纹图像进行比较,而是对已形成数字模板的指纹特征值进行匹配。
1.1.2
指纹识别应用 指纹识别技术是最早的通过计算机实现的身份识别手段,它是应用最为广泛的生物特征识别技术。过去,它主要应用于刑侦系统。近几年来,它逐渐走向市场更为广泛的民用市场。指纹技术在现代生活和工作中的应用已越来越普遍,指纹考勤机、指纹社保、指纹银行、指纹商场、指纹投票、指纹保护电脑、等等生活中和工作中的新现象已广为人知,其应用相当广泛,指纹技术正在日益刷新着我们的现代化生活方式。指纹识别技术是目前国际公认的应用广泛、价格低廉、易用性高的生物认证技术。指纹只是人体皮肤的小部分,但是它却蕴涵了大量的信息。这些皮肤的纹路在图案、断点和交叉点上是各不相同的,在信息处理中将它们称作"特征"。医学上已经证明这些特征对于每个手指都是不同的,而且这些特征具有唯一性和永久性。因此我们就可以把一
个人同他的指纹对应起来,通过比较他的指纹特征和预先保存的指纹特征,就可以验证他的真实身份。
1.1.3
指纹识别技术的发展 经过了十几年的低速自然增长,指纹识别技术即将迎来一个跨越式发展的黄金时期。专家们保守估计,未来 5 年,我国将有近百亿元的市场等待着企业去开拓。指纹识别技术的巨大市场前景,将对国际、国内安防产业产生巨大的影响。较小的公司将面临新进入的传统行业大公司的无情竞争。在这些巨无霸面前,现有中小公司很难说有太大的竞争力,行业重新洗牌不可避免,合并与退出可能会成为大部分中小公司的无奈选择。最终可能形成传统行业的公司或大资本在较短时间内主导生物特征识别行业的局面。这也是每一个新兴市场的必然结果。而竞争的结果将会形成一个新兴的大产业。
国内生物识别技术的应用主要集中在企业级应用上,在 2002 年总体约为 2.5 亿元人民币的终端市场中,超过 40%的产品都用于考勤、门禁系统之中。自 2002 年以来整个生物识别市场中指纹识别占据了超过 98%的份额,从需求看,中国 13 亿人口决定了中国将是未来全球最大的指纹识别认证技术市场。
1.2
系统设计的目的 现代社会越来越需要高效可靠的身份识别系统。传统的个人身份鉴别手段如口令、密码、身份-甚至磁卡、IC 卡等识别卡方式。由于其与身份人的可分离性,可假冒、可伪造、可盗用、可破译,已不能完全满足现代社会经济活动和社会安全防范的需要。从消除人为不安全因素看,只有不易被他人代替、仿制、甚至其本人也无法转让的身份误码别凭证才能胜任。因此,基于人体生理特征的身份识别系统逐渐为社会所瞩目。随着识别技术的不断成熟,随着计算机技术的飞速发展,各种基于人体生理特征的身份识别系统如:指纹、手掌、声音、视网膜、瞳孔、面纹等识别技术纷纷从实验室中走出来,由小型机落户微机,走向民用。而从易用性、安全性、成熟性和造价等方面综合比较,指纹识别技术将成为未来人体生理特征身份识别技术的主流之一,指纹自动识别技术开创了个人身份鉴别的新时代,将来我们生活的很多场 合都要用到指纹,指纹使我们的生活更方便、安全。
1.3
课题背景 指纹检测可以良好的判断和定义一个人的真实生物身份,从而降低社会活动中的信任成本。从根本上改变经济和社会交往模式,提高效率。未来社会利用生物识别技术的场合将会越来越多,指纹识别技术日趋完善,指纹检测变得越发重要。本次设计指纹识别电子密码锁是基于深圳市深指科技发展有限公司推出的 FM-70 系列光学指纹模块,可以根据串口通信协议与上位机实现通信,从而实现指纹的录入、存储、比对,并通过 LCD12864-15C 液晶显示出指纹采集存储的过程和比
对的结果。指纹电子密码锁安全可靠,使用方便。
2
整体设计方案 2.1
系统总体设计 2.1.1
系统功能描述 本系统是针对指纹采集、识别模块开发出的指纹识别电子密码锁系统。该系统使用指纹模块搜索手指,一旦搜索到手指,立即采集指纹图像,并将采集到的图像转化成数据的形式发送出去。它利用人体指纹各异性和不变性,为用户提供加密手段,使用时只需将手指平放在指纹采集仪的采集窗口上,即可完成采集任务,操作十分方便快捷。主要功能就是用液晶显示出指纹模块采集指纹图像各个流程及比对的结果.采集指纹图像之前,指纹模块必须要检测手指是否放在采集窗口上,所以就要有录入指纹这一项功能。简单的描述本次设计的功能即使用指纹模块检测、录入指纹,将比对的数据显示在液晶屏幕上.本系统拥有一次最多录入三个指纹的能力。
该系统的主要功能有以下几个方面:
1.录入指纹:系统预先要有录入指纹的功能,即将个人的指纹通过指纹采集器采集用户指纹的特征信息。
2.合成指纹模板并存储:通过光电转换后,将指纹特征值和对应的 ID 号存储到存储器中。上位机只要有上传指纹的命令,模块可以立即将数据传送到指定位置。
3.搜索指纹库比对指纹:当有指纹录入时,模块会响应上位机指令搜索指纹库比对指纹,同时液晶显示比对结果,继电器动作、发光二极管亮。
2.1.2
系统总体框架 系统的总体框架是指根据设计任务要求,对系统所需元件、设备参数进行必要的计算,通过认真研究、分析、比较选定设备型号,再将设备、元件通过可靠的接口电路联系起来构成一个完整的系统。在系统的整体方案确定之前,先要明确设计要求,然后对系统硬件、软件进行设计,其中包括绘制原理框图、电路图,对原理进行必要说明,综合考虑系统的性能和稳定性要求,以保证所设计的系统达到预期的要求。通过查阅大量的文献资料、综合分析考虑 。主控芯片选用 Atmeg16 单片机。系统总体框图如图 2-1 所示:
图 2-1 系统总体框图
AT MEG16
单片机
LCD
指纹模块 4 个独立按键 以及继电器和指示灯
系统主要由 MCU、液晶屏、指纹模块组成. 系统的工作方式主要是,当检测到有按键按下时先由 MCU 通过串口通信控制指纹模块对指纹进行采集、录入、存储、比对。然后,根据所得的数据对其它接口器件,如液晶屏、继电器进行响应操作。
2.2
系统核心部件单片机 2.2.1
单片机的选择 单片机微型计算机是微型计算机的一个重要分支,也是颇具生命力的机种。单片机微型计算机简称单片机,特别适用于控制领域,故又称为微控制器。
通常,单片机由单块集成电路芯片构成,内部包含有计算机的基本功能部件:中央处理器、存储器和 I/O 接口电路等。因此,单片机只需要和适当的软件及外部设备相结合,便可成为一个单片机控制系统。
20 世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。时间对人们来说总是那么宝贵,工作的忙碌性和繁杂性容易使人忘记当前的时间。忘记了要做的事情,当事情不是很重要的时候,这种遗忘无伤大雅。但是,一旦重要事情,一时的耽误可能酿成大祸。
目前,单片机正朝着高性能和多品种方向发展趋势将是进一步向着 CMOS 化、低功耗、小体积、大容量、高性能、低价格和外围电路内装化等几个方面发展。单片机应用的重要意义还在于,它从根本上改变了传统的控制系统设计思想和设计方法。从前必须由模拟电路或数字电路实现的大部分功能,现在已能用单片机通过软件方法来实现了。这种软件代替硬件的控制技术也称为微控制技术,是传统控制技术的一次革命。
单片机经过 1、2、3 代的发展,正朝着多功能、高性能、低电压、低功耗、低价格、大存储容量、强 I/O 功能及较好的结构兼容性方向发展。其发展趋势不外乎以下几个方面:
1.多功能
单片机中尽可能地把所需要的存储器和 I/O 口都集成在一块芯片上,使得单片机可以实现更多的功能。比如 A/D、PWM、PCA(可编程计数器阵列)、WDT(监视定时器---看家狗)、高速 I/O 口及计数器的捕获/比较逻辑等。
有的单片机针对某一个应用领域,集成了相关的控制设备,以减少应用系统的芯片数量。例如,有的芯片以 MEG16 为核心,集成了 USB 控制器、SMART CARD接口、MP3 解码器、CAN 或者 I*I*C 总线控制器等,LED、LCD 或 VFD 显示驱动器也开始集成在 8 位单片机中。
2.高效率和高性能 为了提高执行速度和执行效率,单片机开始使用 RISC、流水线和 DSP 的设计技术,使单片机的性能有了明显的提高,表现为:单片机的时钟频率得到提高;同样频率的单片机运行效率也有了很大的提升;由于集成度的提高,单片机的寻址能力、片内 ROM(FLASH)和 RAM 的容量都突破了以往的数量和限制。
由于系统资源和系统复杂程度的增加,开始使用高级语言(如 C 语言)来开发单片机的程序。使用高级语言可以降低开发 难度,缩短开发周期,增强软件的可读性和可移植性,便于改进和扩充功能。
AVR 内核单片机具有丰富的指令集和 32 个通用工作寄存器。所有的寄存器都直接与算逻单元(ALU) 相连接,使得一条指令可以在一个时钟周期内同时访问两个独立的寄存器。这种结构大大提高了代码效率,并且具有比普通的 CISC 微控制器最高至 10 倍的数据吞吐率。ATmega16L 有如下特点:
.16K 字节的系统内可编程 Flash(具有同时读写的能力,即 RWW); .512 字节 EEPROM,1K 字节 SRAM; .32 个通用 I/O 口线; .32 个通用工作寄存器;
.用于边界扫描的 JTAG 接口,支持片内调试与编程; .三个具有比较模式的灵活的定时器/ 计数器(T/C); .片内/外中断,片内经过标定的 RC 振荡器; .可编程串行 USART,有起始条件检测器的通用串行接口; .8 路 10 位具有可选差分输入级可编程增益(TQFP 封装) 的 ADC; .具有片内振荡器的可编程看门狗定时器; .一个 SPI 串行端口; .四通道 PWM,两路 8 位,两路 16 位; .六个可以通过软件进行选择的省电模式:空闲模式、ADC 噪声抑制模式、省电模式、掉电模式、Standby 模式以及扩展的 Standby 模式; .速度等级:0 - 8 MHz; .工作电压:2.7 - 5.5V;
.工作于空闲模式时 CPU 停止工作,而 USART、两线接口、A/D 转换器、SRAM、T/C、SPI 端口以及中断系统继续工作;
.掉电模式时晶体振荡器停止振荡,所有功能除了中断和硬件复位之外都停止工作; .在省电模式下,异步定时器继续运行,允许用户保持一个时间基准,而其余功能模块处于休眠状态; .ADC 噪声抑制模式时终止 CPU 和除了异步定时器与 ADC 以外所有 I/O 模块的工作,以降低 ADC 转换时的开关噪声;
.Standby 模式下只有晶体或谐振振荡器运行,其余功能模块处于休眠状态,使得器件只消耗极少的电流,同时具有快速启动能力; 扩展 Standby 模式下则允许振荡器和异步定时器继续工作。
本芯片是以 Atmel 高密度非易失性存储器技术生产的。片内 ISP Flash 允许程序存储器通过 ISP 串行接口,或者通用编程器进行编程,也可以通过运行于 AVR 内核之中的引导程序进行编程。引导程序可以使用任意接口将应用程序下载到应用 Flash 存储区(Application Flash Memory)。在更新应用 Flash 存储区时引导 Flash 区(Boot Flash Memory)的程序继续运行,实现了 RWW 操作。
通过将 8 位 RISC CPU 与系统内可编程的 Flash 集成在一个芯片内,ATmega16 成为一个功能强大的单片机,为许多嵌入式控制应用提供了灵活而低成本的解决方案。
下面是基于八位 AVR 单片机芯片 ATMEGA16 的主控系统方案:
2.2.2
ATMEG16 单片机的介绍 ATMEG 16 的管脚说明如图 2-2 所示:
图 2-2 DIP 封装 ATMEG 16 单片机引脚结构图
1. VCC为数字电路的电源,GND为地。
2. 端口A(PA7-PA0)作为A/D转换器的模拟输入端,是8位双向I/O口,具有编程的内部上拉电阻。其输出缓冲器具有对...
推荐访问:需要修稿部分