当前位置: 简表范文网 > 专题范文 > 公文范文 >

测绘外文翻译外文文献英文文献水准尺和水准仪

| 来源:网友投稿

下面是小编为大家整理的测绘外文翻译外文文献英文文献水准尺和水准仪,供大家参考。

测绘外文翻译外文文献英文文献水准尺和水准仪

 

 Level Rods and Lenels

  There are many kinds of lenel rods

 are in one piece and others (for ease of transporting) are either telescoping or

 rods are usually made of wood and are graduated from zero at the

 may be either selfreading rods that are read directly through the telescope or targetrods where the rodman sets a sliding target on the rod and takes the reading directly. Most rods serve as either self-reading or as target rods. Among the several types of level rods available are the Philadelphia rod,the Chicago rod, and the Florida rod. The Philadelphia rod, the most common one, is made in two sections. It has a rear section that slides on the front section. For readings between 0 and 7 ft, the rear section is not extended; for reading between 7 and 13 ft, it is necessary to extended the rod. When the rod is extended,it is called a high rod. The Philadelphia rod is distinctly divided into feet, tenths, and hundredths by means of alternating black and white spaces painted on the rod. The Chicago rod is 12 ft long and is graduated in the same way as the Philadelphia rod, but it consists of three sliding section. The Florida rod is 10 ft long and is graduated in white an red stripes, each stripe being

 ft wide. Also available for ease of transportation are tapes or ribbons of waterproofed fabric which are marked in the same way that a regular level rod is marked and which can be attached to ordinary wood strips. Once a job is completed, the ribbon can, be removed and rolled up. The wood strip can be thrown away. The instrumentman can clearly read these various level rods through his telescope for distances up to 200 or 300 ft, but for greater distances he must use a target. A target is a small red and white piece of metal attached to the rod. The target has a

 vemier that enables the rodman to take a reading to the nearest

 ft. If the rodman is taking the readings with a target and if the line of sight of the telescope is above the 7-ft mark, it is obvious that he cannot take the reading directly in the normal fashion. Therefore, the back face of the rod is numbered downward from 7 to 13 ft. The target is set at acertain mark on the front face of the rod and as the back section is pushed upward, it runs under an index scale and a vernier which enables the rodman to take the reading on the front. Before setting up the level the instrumentman should give some though to where he must stand in orde to make his sights. In other words, he will consider how to place the tripod legs so that he can stand comfortably between them for the lay-out of the work that he has in mind. The tripod is desirably placed in solid ground where the instrument will not settle as it mose certainly will in muddy or swampy areas. It may be necessary to provide some special support for the instrument, such as stakes or a platform. The tripod legs should be well spread apart and adjustde so that the footplate under the leveling screws is approximately level. The insatrumentman walks around the instrument and pushes each leg frimly into the ground. On hillsides it is usually convenient to place ong leg uphill and two downhill. After the instrument has been levelde as much as possible by adjusting the tripod legs, the telescope is turned over a pair of opposite leveling screws if a four-screw instrument is being

 the bubble is roughly centered by turning that pair of screw in opposite directions to each other. The bubble will move in the direction of the left

 thumb. Next, the telescope is turned over the other pair of leveling screws and the bubble is again roughly centered. The telescope is turned back iver the first pair and the bubble is again roughly centered, and so on. This process is repeated a few more times with increasing care untill the bubble is centered with the telescope turned over either pair of screws. If the level is properly sdjusted, the bubble should remain centered when the telescopeis turued in any direction. It is to be expected that there will be a slight maladjustment of the instrument that will result in a slight movement of the bubble; however, the precision of thework should not be adversely affected if the bubble is centered each time a rod reading is taken. The first step in leveling a three-screw instrument is to turn the telescope untill the bubble tube is parallel to two of the screws. The bubble is centered by turning these two screws in opposite directions. Next, the telescope is turned so that the bubble tube is perpendicular to a line through screws. The bubble is centered by turning screw . These steps are repeated untill the bubble stays centered when the telescope is turned back and forth.

  Electronic Distance Measurements

 A major advance in surveying in recent years has been the development of electronic distance-measuring instruments (ED-MIs). These devices determine lengths based on phase changes that occur as eletromagnetic energy of known wavelength travels from one end of a line to the other and returns. The first EDM instrument was intronduced in 1948 by Swedish physicist Erik

 Bergstrand. His device, called the geodimeter(an acronym for geodetic distance meter), resulted from attempts to improve methods for measuring the velocity of light. The instrument transmetted visible light and was capable of accurately measuring distances up to about 25 mi (40km) at night. In 1957 a second EDM apparatus. the tellurometer. Designed by

 and introduced in South Africa, transmitted invisible microwaves and was capable of measuring distances up to 50 mi (80km) or

 or night. The potential value of these early EDM models to the Surveying profession was immediately recognized: houever, they were expensive and not readily portable for field operations. Furthermore, measuring procedures were lengthy and mathematical reductions to obtain distances from observed values were difficult and time-consuming. In addition. The range of operation of the first geodimeter was limited in daytime use. Continued research and development have overcome all these deficiencies. The chief advantages of electronic surveying are the speed and accuracy with which distances can be measured. If a line of sight is available, long or short lengths can be measured over bodies of water or terrain that is inaccessible for taping. With modern EDM equipment, distance are automatically displayed in digital form in feet or meters, and many have built-in microcomputers that give results internally reduced to horizontal and vertical components. Their many significant advantages have revolutionized surveying procedures and gained worldwide acceptance. The long-distance measurements possible with EDM equipment make use of radios for communication, which is an absolute necessity in modern practice.

 One syetem for classifying EDMIs is by wavelength of transmitted electromagnetic

 energy ; the following categories exist : Electro-optical instruments

 Which transmit either modulatedlaser or infrared light having wavelengths within or slightly beyond the visible region of the spectrum. Microwave equipments

 Which transmits microwaves with frequencies in the range of 3 to 35 GHz corresponding to wavelengths of about

 to

 mm. Another classification system for EDMIs is by operational range . It is rather subjective , but in general two divisions fit into this system : short and medium range .The short-range group includes those devices whose macimum measuring capability does not exceed about 5km . Most equipment in this division is the electro –optical type and uses infrared light . These instruments are small, portable, easy to operate, suitable for a wide variety of field surveying work, and used by many practitioners. Instruments in the medium-range group have measuring capabilities extending to about 100 km and are either the electro-optical (using laser light) or microwave type. Although frequently used in precise geodetic they are also suitable for land and engineering surveys. Longer-range device also available can measure lines longer than 100km,but they are nit generally used in ordinary surveying work. Most operate by trasmitting long radio waves, but some employ microwaves.

 They are used primarily in oceanogaraphic and hydrograpgic surving and navigation.

 In general, EDM equiment measures distances by comparing aline of unkown length to the known wavelength of modulated electromagnetic energy. This is similar to relating a needed distance to the calibrated length of a steel tape.

 Electromagnetic energy propagates through the atmosphere in accordances with the following equation:

 V=fλ

  (1) Where Vis the velocity of electromanetic energy, in meters per second;f the modulated frequency of the energy ,in hertz, and λthe wavelenth, in meteres. With EDMIs frequency can be precisely controlled but velocity varies with atmophere temperature, pressure,and humidity. Thus wavelength and frequency must vary in conformance with EQ.(1). For accurate electronic distance measuement, therefor., the atmosphere must be sampled and corrctios made accordingly. The generalizedprocedure of measuring distance electronically is depicted in . an edm device, centered by means of a plumb bob or optical plummit over staton A, trasmits a carrier signal of electromagnetic energy upon which a reference frequency has been superimposed or modulated. The signal is returned from staion B to the revevier, so its trvel path is double the slope distance AB. In ,the modulated electromagnetic energy is represented by a series of sine waves having wave-length λ. Any position along a givenj wave can be specified by its phase angle, which is 0°at its beginning, 180°at the midpoint, and 360°at its end. EDM devices used in surveying operate by measuring phase shift. In this procedure, the returned energy undergoes a complete 360°phase change for each even multiple of exactly one-half the wavelength separating the line-s endpoints. If, therefore, the distance is precisely equal to a full multiple of the half-wave-length, the indicated phase change will be zero. In

 example, stations A and B are exactly eight half-wavelengths apart :

 hence, the phase change is zero. ...

相关推荐

热门文章

关于珍爱生命作文800字高中【精选推荐】

范文参**网最近发表了一篇名为《2022关于珍爱生命的作文800字高中【】》的范文,感觉写的不错,希望对您有帮助,重新整理了一下发到这里。在平日的学习、工作和生活里,大家都不可避免地要接触到作文吧。下面小编为大家整理了2022关于的作文800字高中【5

草房子第一章秃鹤心得感悟合集【精选推荐】

《草房子第一章秃鹤的心得感悟》是一篇好的范文,觉得有用就收藏了,这里给大家转摘到。草讲述了发生在20世纪60年代初江南水乡动人动情的童年故事。读完了草房子小说,你有着怎样的草房子读书?你是否在找正准备撰写“草房子第一章秃鹤的心得感悟”,下面小编收集了相关的素材,供大家写文参考!草房子第

共青团成立100周年作文600字(完整)

本页是最新发布的《2022共青团成立100周年作文600字【精选】》的详细范文参考文章,好的范文应该跟大家分享,这里给大家转摘到。共青团员是中国共产党的后备力量,也是党的生命力的源,理论上的成熟是****上成熟的基础,****上的清醒来源于理论上的坚定。下面是小编为大家带来的

2022百年奋斗谋复兴勇毅前行兴伟业学习心得体会范本合集

《2022百年奋斗谋复兴勇毅前行兴伟业学习心得体会范文》是一篇好的范文,觉得有用就收藏了,希望对网友有用。2022百年奋斗谋复兴勇毅前行兴伟业学习心得体会范文了不起的红色精神,值得永远待播与发扬下去!相信祖国将会更加强大,更加繁荣富强。下面是小编为您推荐2022百年奋斗谋复兴勇毅前

2022年度关于端正态度作文初三(精选文档)

《2022关于端正态度的作文初三【精选】》是一篇好的范文,觉得有用就收藏了,看完如果觉得有帮助请记得(CTRL+D)收藏本页。在生活、工作和中,大家都不可避免地要接触到作文吧,作文是通过文字来表达一个主题意义的记叙方法。下面小编为大家整理了2022关于端正的作文初三【精选】的相关内容,以供参

2022清明网上祭英烈活动心得感悟经典范本10篇600字

本页是最新发布的《清明网上祭英烈活动心得感悟经典范文10篇600字》的详细范文参考文章,觉得有用就收藏了,希望大家能有所收获。清明祭心得感悟经典范文10篇600字说到清明节这个大家熟悉的节日,大家一定都是去祭拜祖先!但是可曾想过在清明节这天来祭奠我们的英烈们呢?下面是小编为您推荐

2022年度《公民节约用水行为规范》倡议书范本

最近发表了一篇名为《2022《公民节约用水行为规范》倡议书范文【五篇】》的范文,感觉很有用处,看完如果觉得有帮助请记得(CTRL+D)收藏本页。虽然人类已浪费了许多,但是人类们已经感觉到水的可贵而开始保护起来。在此大家一起杜绝浪费水之源,保护水资源吧。下面小编在这里为大家精心整理了几篇20

2022年大学生档案自我鉴定300字10篇

2022年普通大学生个人社会实践实习报告精选服务社会做好思想准备和业务准备,公司内部电脑系统都是统一英文系统,就要求自己以职场……[详细]2022年党员思想汇报例文两篇【完整版】所以在以后的学习和生活中,经历过苦难的中国,工作以及生活中,特别是通过学习党章党纪……[详细]企业员工服务意识培训心得体会

关于学习主题讲话稿范本10篇(2022年)

本页是最新发布的《2022年关于学习主题讲话稿范文10篇》的详细范文参考文章,觉得有用就收藏了,希望大家能有所收获。讲话稿是一个统称,涵盖面较大。它的适用范围,主要是各种会议和一些较庄重、隆重的场合。下面是小编收集整理的2022年关于主题讲话稿,大家一起来看看吧。2022年关于学习主题讲话

2022年争先创优演讲稿最新10篇(完整文档)

《争先创优演讲稿最新10篇》是一篇好的范文,觉得有用就收藏了,这里给大家转摘到。演讲稿具有宣传、鼓动、教育和欣赏等作用,它可以把演讲者的观点、主张与思想感情传达给听众以及读者,使他们信服并在思想感情上产生共鸣。下面小编给大家带来关于争先创优演讲稿,希望会对大家的与有所帮助。争先创优演讲稿1

2022全国中小学生安全教育日心得体会三篇

最近发表了一篇名为《2022全国中小学生安全教育日心得体会三篇》的范文,感觉写的不错,希望对您有帮助,重新编辑了一下发到。2022全国中小学生日心得体会三篇为贯彻落实珍爱,安全第一为主题的中小学安全日教育活动,我校领导高度重视,紧紧围绕安全日安全教育这一主线,在师生中开展了丰富多

2022年爱细节作文600字初中范本

《2022爱的细节作文600字初中范文【】》是一篇好的范文,觉得应该跟大家分享,希望对网友有用。爱是冬日的一缕阳光,使饥寒交迫的人感到人间的温暖;爱是一场洒落在久旱的土地上的甘霖,使濒临绝境的人重新看到生活的希望;爱是一首飘落在夜空里的歌谣,使孤苦无依的人获得心灵的慰藉。下面小编为大家整理了20