当前位置: 简表范文网 > 教案设计 >

函数性质教案五篇

| 来源:网友投稿

函数的性质教案1  教学目标:  1.进一步认识函数的性质,从形与数两个方面引导学生理解掌握函数奇偶性的概念,能准确地判断所给函数的奇偶性;  2.通过函数的奇偶性概念的教学,揭示函数奇偶性概念的形下面是小编为大家整理的函数性质教案五篇,供大家参考。

函数性质教案五篇

函数的性质教案1

  教学目标:

  1.进一步认识函数的性质,从形与数两个方面引导学生理解掌握函数奇偶性的概念,能准确地判断所给函数的奇偶性;

  2.通过函数的奇偶性概念的教学,揭示函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,培养学生从特殊到一般的概括能力,并渗透数形结合的数学思想方法;

  3.引导学生从生活中的对称联想到数学中的对称,师生共同探讨、研究,从代数的角度给予严密的代数形式表达、推理,培养学生严谨、认真、科学的探究精神.

  教学重点:

  函数奇偶性的概念及函数奇偶性的判断.

  教学难点:

  函数奇偶性的概念的理解与证明.

  教学过程:

  一、问题情境

  1.情境.

  复习函数的单调性的概念及运用.

  教师小结:函数的单调性从代数的角度严谨地刻画了函数的图象在某范围内的变化情况,便于我们正确地画出相关函数的图象,以便我们进一步地从整体的角度,直观而又形象地反映出函数的性质.在画函数的图象的时候,我们有时还要注意一个问题,就是对称(见P41).

  2.问题.

  观察函数=x2和=1x(x≠0)的图象,从对称的角度你发现了什么?

  二、学生活动

  1.画出函数=x2和=1x(x≠0)的图象

  2.利用折纸的方法验证函数=x2图象的对称性

  3.理解函数奇偶性的概念及性质.

  三、数学建构

  1.奇、偶函数的定义:

  一般地,如果对于函数f(x)的定义域内的任意的一个x,都有f(-x)=f(x),那么称函数=f(x)是偶函数;

  如果对于函数f(x)的定义域内的任意的一个x,都有f(-x)=-f(x),那么称函数=f(x)是奇函数;

  2.函数的奇偶性:

  如果函数f(x)是奇函数或偶函数,我们就说函数f(x)具有奇偶性,而如果一个函数既不是奇函数,也不是偶函数(常说该函数是非奇非偶函数),则说该函数不具有奇偶性.

  3.奇、偶函数的性质:

  偶函数的图象关于轴对称,奇函数的图象关于原点对称.

  四、数*用

  (一)例题

  例1 判断函数f(x)=x3+5x的奇偶性.

  例2 判定下列函数是否为偶函数或奇函数:

  (1)f(x)=x2-1; (2)f(x)=2x;

  (3)f(x)=2|x|; (4)f(x)=(x-1)2.

  小结:1.判断函数是否为偶函数或奇函数,首先判断函数的定义域是否关于原点对称,如函数f(x)=2x,x∈[-1,3]就不具有奇偶性;再用定义.

  2.判定函数是否具有奇偶性,一定要对定义域内的任意的一个x进行讨论,而不是某一特定的值.如函数f(x)=x2-x-1,有f(1)=-1,f(-1)=1,显然有f(-1)=-f(1),但函数f(x)=x2-x-1不具有奇偶性,再如函数f(x)=x3-x2-x+2,有f(-1)=f(1)=1,同样函数f(x)=x3-x2-x+2也不具有奇偶性.

  例3 判断函数f(x)= 的奇偶性.

  小结:判断分段函数是否为具有奇偶性,应先画出函数的图象,获取直观的印象,再利用定义分段讨论.

  (二)练习

  1.判断下列函数的奇偶性:

  (1) f(x)=x+ ;(2) f(x)=x2+ ;

  (3)f(x)= ;(4) f(x)= .

  2.已知奇函数f(x)在轴右边的图象如图所示,试画出函数f(x)在轴左边的图象.

  3.已知函数f(x+1)是偶函数,则函数f(x)的对称轴是 .

  4.对于定义在R上的函数f(x),下列判断是否正确:

  (1)若f(2)=f(-2),则f(x)是偶函数;

  (2)若f(2)≠f(-2),则f(x)不是偶函数;

  (3)若f(2)=f(-2),则f(x)不是奇函数.

  五、回顾小结

  1.奇、偶函数的定义及函数的奇偶性的定义.

  2.奇、偶函数的性质及函数的奇偶性的判断.

  六、作业

  课堂作业:课本44页5,6题.

函数的性质教案2

  一、教材分析

  (一)教材的地位和作用

  本课时主要学习指数函数的图像和性质概念,通过指数函数图像的研究归纳其性质。“指数函数”是函数中的一个重要基本初等函数,是后续知识——对数函数(指数函数的反函数)的准备知识。本节课的重点是指数函数的图像及性质,难点在于弄清楚底数a对于函数变化的影响。通过这部分知识的学习进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识并体会研究函数较为完整的思维方法,此外还可类比学习后面的其它函数。

  (二)教学目标

  知识维度:初中已经学习了正比例函数、反比例函数和 一次函数,并对一次函数、二次函数作了更深入研究,学生已经初步掌握了研究函数的一般方法,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

  能力维度:学生利用描点法画出函数的图像,并描述出函数的图像特征,能够为研究指数函数的性质做好准备。

  素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

  1、知识与技能目标:

  (1)掌握指数函数的概念(能理解对a的限定以及自变量的取值可推广至实数范围);

  (2)会做指数函数的图像;

  (3)能初步把握指数函数的图像,性质及其简单应用。

  2、过程与方法目标:

  通过由指数函数的图像归纳其性质的学习过程,由图像研究指数函数的性质。利用性质解决实际问题,培养学生探究、归纳分析问题的能力。

  3、情感态度与价值观目标:

  (1)在学习的过程中体会研究具体函数及其性质的过程和方法,如体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题

  (2)通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、 综合的能力通过探究体会“数形结合”的思想;感受知识之间的关联性;体会研究函数由特殊到一般再到特殊的研究学习过程;体验研究函数的一般思维方法。

  (三)教学重点和难点

  教学重点:指数函数的图象和性质。

  教学难点:指数函数的图象性质与底数a的关系。

  教学关键:从实际出发,使学生在获得一定的感性认识和基础上,通过观察、比较、归纳提高到理性认识,以形成完整的概念;在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。

  课时安排:1课时

  二、学情分析

  学生已有一定的函数基本知识、可建立简单的函数关系,为以函数关系的建立作为本节知识的引入做了知识准备。此外,初中所学有理数范围内的指数相关知识,将已有知识推广至实数范围。在此基础上进入指数函数的学习,并将所学对函数的认识进一步推向系统化。

  三、教法分析

  (一)教学方式

  直接讲授与启发探究相结合

  (二)教学手段

  借助多媒体,展示学生的做图结果;演示指数函数的图像

  四、教学基本思路:

  (一)创设情境,揭示课题。

  1创设情境(如何建立一个关于指数函数的数学模型——后续解决)

  2引入指数函数概念

  (二)探究新知。

  1研究指数函数的图象

  2归纳总结指数函数的性质

  (三)巩固深化,发展思维

  (四)归纳整理,提高认识

  (五)巩固练习与作业

  (六)教学设计说明

  1、抛出生活中的实例,需要建立一个关于指数函数的数学模型,为学生提出问题;提高学生学习新知识的积极性以及体会数学与生活密切相关。

  2、用简单易懂的实例引入指数函数概念,体会由特殊到一般的思想。

  3、探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图象突破,体会数形结合的思想。通过研究几个具体的指数函数引导学生通过观察图象发现指数函数的图象规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。让学生在研究出指数函数的一般性质后进行总结归纳函数的其他性质,从而对函数进行较为系统的研究。

  4、进行一些巩固练习从而能对函数进行较为基本的应用

函数的性质教案3

  一、教学设计思路

  1. 本节 课讲述内容为北师大版教材九年级下册第五章《反比例函数》 的第二节,也这一章的重点。本节课是在理解反比例 函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。

  2. 对教材的分析

  (1) 教学目标:进 一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对 函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。

  (2) 重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。

  (3) 难点:探索并掌握反比例函数的主要性质。

  二、教学过程

  (一)作图象,试比较

  1、提问:

  (1)=4/x 是什么函数?你会作反比例函数的图象吗?

  (2)作图的步骤是 怎样的(3)填写电脑上的表格,开始在坐标纸上描点连线。

  2、按照上述方法作 =—4/x 的图象3、 对照你所作的两个函数图象,找一下它们的相同点和不同点。

  (二)细观察,找规律

  1、让学生观察函 数 =/x 的图象 ,按下动画按钮,在运动中观察值的变化与函数图象变化之间的关系,并与同学充分讨论有何规律。

  2、演示反比例函数中心 对称的性质以及轴对称性质,显示反比例函数的两条对称轴。

  3、让学生观察函数 =/x 的图象,观察过反比例函数上任意一 点作x轴和轴的垂线,观察其围成矩形的面积变化情况。

  (1) 拖动,使变化,观察不断变化过程中,矩形面积的变化情况,讨论得出 结论。

  (2) 拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。

  (三)用规律,练一练

  1、给出两个反比例函数的图象,判断哪一个是 =2/x 和 =—2/x 的图象。

  2、判断一位同学画的反比例函数的图象是否正确。

  3、下列函数中,其图象位于第一、三象限

  的有哪几个?在其图象所在象限内,的值随x的增大而增

  大的有哪几个?

  (四)想一想,作小结

  (五)作业:课本137页第1题、141页第2题

函数的性质教案4

  目标:

  1.让学生熟练掌握二次函数的图象,并会判断一元二次方程根的存在性及根的个数 ;

  2.让学生了解函数的零点与方程根的联系 ;

  3.让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的作用 ;

  4。培养学生动手操作的能力 。

  二、教学重点、难点

  重点:零点的概念及存在性的判定;

  难点:零点的确定。

  三、复习引入

  例1:判断方程 x2-x-6=0 解的存在。

  分析:考察函数f(x)= x2-x-6, 其

  图像为抛物线容易看出,f(0)=-60,

  f(4)0,f(-4)0

  由于函数f(x)的图像是连续曲线,因此,

  点B (0,-6)与点C(4,6)之间的那部分曲线

  必然穿过x轴,即在区间(0,4)内至少有点

  X1 使f(X1)=0;同样,在区间(-4,0) 内也至

  少有点X2,使得f( X2)=0,而方程至多有两

  个解,所以在(-4,0),(0,4)内各有一解

  定义:对于函数y=f(x),我们把使f(x)=0的实数 x叫函数y=f(x)的零点

  抽象概括

  y=f(x)的图像与x轴的交点的横坐标叫做该函数的零点,即f(x)=0的解。

  若y=f(x)的图像在[a,b]上是连续曲线,且f(a)f(b)0,则在(a,b)内至少有一个零点,即f(x)=0在 (a,b)内至少有一个实数解。

  f(x)=0有实根(等价与y=f(x))与x轴有交点(等价与)y=f(x)有零点

  所以求方程f(x)=0的根实际上也是求函数y=f(x)的零点

  注意:1、这里所说若f(a)f(b)0,则在区间(a,b)内方程f(x)=0至少有一个实数解指出了方程f(x)=0的实数解的存在性,并不能判断具体有多少个解;

  2、若f(a)f(b)0,且y=f(x)在(a,b)内是单调的,那么,方程f(x)=0在(a,b)内有唯一实数解;

  3、我们所研究的大部分函数,其图像都是连续的"曲线;

  4、但此结论反过来不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)

  5、缺少条件在[a,b]上是连续曲线则不成立,如:f(x)=1/ x,有f(-1)xf(1)0但没有零点。

  四、知识应用

  例2:已知f(x)=3x-x2 ,问方程f(x)=0在区间[-1,0]内没有实数解?为什么?

  解:f(x)=3x-x2的图像是连续曲线, 因为

  f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,

  所以f(-1) f(0) 0,在区间[-1,0]内有零点,即f(x)=0在区间[-1,0]内有实数解

  练习:求函数f(x)=lnx+2x-6 有没有零点?

  例3 判定(x-2)(x-5)=1有两个相异的实数解,且有一个大于5,一个小于2。

  解:考虑函数f(x)=(x-2)(x-5)-1,有

  f(5)=(5-2)(5-5)-1=-1

  f(2)=(2-2)(2-5)-1=-1

  又因为f(x)的图像是开口向上的抛物线,所以抛物线与横轴在(5,+)内有一个交点,在( -,2)内也有一个交点,所以方程式(x-2)(x-5)=1有两个相异数解,且一个大于5,一个小于2。

  练习:关于x的方程2x2-3x+2m=0有两个实根均在[-1,1]内,求m的取值范围。

  五、课后作业

  p133第2,3题

函数的性质教案5

  【知识与技能】

  1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.

  2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.

  【过程与方法

  经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.

  【情感态度】

  通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.

  【教学重点】

  1.会画y=ax2(a>0)的图象.

  2.理解,掌握图象的性质.

  【教学难点】

  二次函数图象及性质探究过程和方法的体会教学过程.

  一、情境导入,初步认识

  问题1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?

  问题2 如何用描点法画一个函数图象呢?

  【教学说明】

  ①略;

  ②列表、描点、连线.

  二、思考探究,获取新知

  探究1 画二次函数y=ax2(a>0)的图象.

  画二次函数y=ax2的图象.

  【教学说明】

  ①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.

  ②从列表和描点中,体会图象关于y轴对称的特征.

  ③强调画抛物线的三个误区.

  误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.

  误区二:并非对称点,存在漏点现象,导致抛物线变形.

  误区三:忽视自变量的取值范围,抛物线要求用*滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.


函数的性质教案5篇扩展阅读


函数的性质教案5篇(扩展1)

——指数函数及性质说课稿3篇

指数函数及性质说课稿1

  一、说教材:

  1.在教材中的地位和作用

  本节内容是高等教育出版社出版的中等职业教育课程改革国家规划新教材《数学(基础模块)》上册第四章第二节第一课时,属于数与代数领域的知识。在之前,学生已学习了函数的概念与性质掌握了研究函数的一般思路,并将幂指数从整数推广到了实数范围的知识,这为过度到本节的学习起着铺垫作用,本节内容是函数内容的深化,又是后续学习对数函数及等比数列的性质的基础,有非常高的实用价值例如在细胞分裂、贷款利息、考古中年份的测算都有较大的应用。也是教材中起承上启下作用的核心知识之一。因此,在指数函数是函数的重要内容之中,在高中阶段有不可替代的作用。

  二、说学情:

  2.学情分析

  心理特点:中职生的共性是一般学习数学的兴趣不高,学习比较被动,自主学习能力比较差,因此在课堂的一开始就要激发学生学习数学的动机,学习动机是直接推动学生学好数学达到学习目的的内在动力,直接影响学习效果。变“要我学”为“我要学”。

  此外职高生生理上表现为少年好动,注意力易分散抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。

  知识障碍上:知识掌握上,学生刚刚学习了函数的定义、图象、性质,已经掌握了研究函数的一般思路,对于本节课的学习会有很大帮助。许多学生出现知识遗忘,所以应全面系统的去回顾与讲述;学生学习本节课的知识障碍,底数对函数图象的影响学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。

  三、说教学目标:

  知识与技能:理解指数函数的概念,掌握指数函数的图像及其性质,并用指数函数的性质解决一些问题。

  过程与方法:让学生经历“特殊→一般→特殊”的认识过程,完善认知结构,领会数形结合、分类讨论、归纳推理等数学思想方法;通过运用多媒体的教学手段,引领学生主动探索指数函数性质,体会学习数学规律的方法,体验成功的乐趣。

  情感态度价值观:让学生感受数学问题探索的乐趣和成功的喜悦,体会数学的理性、严谨及数与形的和谐统一美;使学生获得研究函数的规律和方法,提高学生的学习能力养成积极主动,勇于探索,不断创新的学习习惯和品质。

  四、说教学方法:

  教法的选择与教学手段:基于本节课的特点,应着重采用多种的教学方法和手段,其理论依据是坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

  (1)故事激趣法:通过小故事牵动学生的思维,在他们不会解决又急于的心理之间制造一种悬念,激起学生强烈的求知欲望;

  (2)多种教学方法结合:教学形式上开展分组比赛、课堂抢答等多种形式的活动,使学生在学习中有光荣感、成就感,使他们获得学习的乐趣。

  (3)任务驱动法:根据学生的心理发展规律,采用学生参与程度高讨论教学法。在老师启发引导下,运用问题解决式教法,师生交谈法,图像法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。

  五、说教学过程:

  1、导入新课(2分钟)

  创设情境,兴趣导入:从前有个财主,为人刻薄吝啬,常常克扣工人的工钱,因此附近村民都不愿意到他那里打工。有一天,这个财主家来了一位年轻人,要求打工一个月,报酬是:第一天的工钱只要一分钱,第二天是二分钱,第三天是四分钱……以后每天的工钱是前一天的2倍,直到30天期满。这个财主听了,心想这工钱也真便宜,就马上与这个年轻人签订了合同。可是一个月后,这个财主却破产了,因为他付不了那么多的工钱。那么这工钱到底有多少呢?

  财主应付给打工者的工钱为1073741824分≈1073万元

  (为了激发学生探究的好奇心和学习的兴趣,引起注意,让学生在不会解决又急于的心理状态下学习)

  2、探索新知(7分钟)

  问题1:某种物质的细胞分裂,由1个分裂成2个,2个分裂成4个,4个分裂成8个,……,1个这样的细胞分裂x次后,得到的细胞个数y与x的关系式是什么?

  问题2:《庄子天下篇》中写道:“一尺之棰,日取其半,万世不竭。”请你写出截取x次后,木棰剩余量y关于x的关系式?

  归纳:函数中,指数x为自变量,底2为常数.

  概念:一般地,形如 的函数叫做指数函数,其中底 ( )为常量.指数函数的定义域为 ,值域为

  (设计意图:两个例子恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。 )

  3、分组讨论(8分钟)

  4、例题讲解(12分钟)

  5、强化练习(8分钟)

  6、课堂总结(2分钟)

  7、布置作业(1分钟)

指数函数及性质说课稿2

  一、说教材

  ◆教材的地位及前后联系

  本节课是《中等职业教育规划教材数学》第一册第四章第二节《指数函数》。本节课是学生在已掌握了函数的一般性质之后系统学习的第一个函数,通过学习可进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,也为今后进一步研究函数的性质特别是后面的对数函数打下坚实的基础,同时也培养了学生对函数的应用意识。因此本课有十分重要地位和作用,它对知识起到了承上启下的作用。

  ◆教学目标:

  ☆知识目标:

  1、掌握指数函数的概念,并能根据定义判断一个函数是否为指数函数;

  2、掌握指数函数的图像和性质;

  3、能根据单调性解决比较大小的问题。

  ☆能力目标:

  1、培养学生观察、分析、分类、归纳、探索发现解决问题的能力,体会从特殊到一般的研究方法和分类讨论思想。

  2、提高学生运用现代信息化手段解决数学问题的能力。

  ☆情感目标

  1、通过问题的解决,树立学生的自信心,体会成功与快乐;

  2、渗透数形结合、分类讨论的思想,激发学生学习数学的兴趣,培养学生探索精神和创新意识;

  3、通过学习让学生感受到数学与现实生活的联系,让学生发现生活中的函数问题。

  ◆教材的重点和难点:

  ☆教学重点:指数函数的概念、图像和性质;

  ☆教学难点:如何由图像归纳指数函数的性质以及性质的应用。

  二、◆学情分析

  根据这几年的教学我发现学生在后面学习中一遇到指对数问题就发蒙,原因是什么呢?问题就出在学生刚刚学完第三章函数的性质,应用的又是初中比较熟悉的一元二次函数。一下子出现了一个非常陌生的函数而且需要记很多性质,学生感觉很吃力。对于我任教的12财会班的学生整体理论知识水*参差不齐,学生缺乏自主探索、发现的意识。但是性格活泼、兴趣广泛,乐于实践。因此我在备课时以学生为本,以学生活动为主线,从兴趣出发,由2012年春节晚会的魔术引出本节课的指数函数,让学生从特殊到一般去认识指数函数,然后通过多媒体课件的充分展示让学生分组讨论、归纳出指数函数的性质。

  三、教法、学法

  ◆教学方法:启发、合作探究、讲练结合等教学方法。充分遵循“教师为主导,学生为主体”的教学原则,采用多媒体辅助教学手段,借助多媒体,演示指数函数的图像形成过程,便于总结函数的性质。

  ◆学习方法:采用自主探究、小组合作、观察归纳的学习方法。

  四、教学程序

  ◆教学流程:

  教学流程设计

  1、创设情境,导入新课

  2、构建模型,形成概念

  3、深入探究,发现性质

  4、讲练结合,巩固提高

  5、课堂小结,构建体系

  6、作业布置,延伸课堂

  ◆教学过程:

  1、创设情境,导入新课

  通过春节的撕报纸的魔术调动学生的兴趣,教师接着引导学生分析撕报纸得到的分数与撕报纸的次数之间的函数关系,分析出撕报纸得到的每一分小报纸的面积与撕报纸的次数之间得到的函数关系,从而建立一个关于指数函数的数学模型,为学生提出问题;提高学生学习新知识的积极性以及体会数学与生活密切相关。

  2、构建模型,形成概念

  通过两个具体的指数函数模型,给出指数函数概念,让学生体会由特殊到一般的思想,并通过练习一判断一个函数是否是指数函数,加深学生对指数函数概念的理解。

  3、深入探究,发现性质

  在这个环节,函数图像的性质是本节课的重点也是难点,我准备采用多媒体技术辅助教学突破重点、难点,这一环节关键是弄清楚底数a的变化对函数图像及性质的影响,利用多媒体动感显示,通过颜色的区别,加深感性认识,非常直观形象地演示a的变化与图像的变化规律,突破静态思维,使难点迎刃而解。

  华罗庚先生曾说:“数缺形时少直观,形缺数时难入微。”探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图像突破,体会数形结合的思想。通过两个指数函数的作图过程巩固学生作图能力,让学生初步发现图像规律。紧接着同时通过软件让学生举出4个指数函数,通过软件快速画出四个具体的指数函数图像,充分引导学生通过观察图像发现指数函数的图像规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。让学生在研究出指数函数的一般性质后进行总结归纳函数的其他性质,从而对函数进行较为系统的研究。

  4、讲练结合,巩固提高

  教师通过对例题一比较两个函数值的大小、例题二求函数的定义域引导学生如何使用函数的性质解决问题,同时通过学生进行一些巩固练习使学生对函数能进行较为基本的应用。

  5、课堂小结,构建体系

  小结环节,让学生自己总结函数的概念和性质,让学生建立研究函数的知识体系

  6、作业布置,延伸课堂

  作业布置环节必做题巩固学生上课内容,选做题“古莲子年龄之谜”的问题为学习能力较强的同学更大的发挥空间,因材施教,分层作业,巩固提高,为后续的学习奠定基础,同时也拓展学生的知识视野。

指数函数及性质说课稿3

  我本节课说课的内容是高中数学第一册第二章第六节“指数函数”的第一课时——指数函数的定义,图像及性质。我将尝试运用新课标的理念指导本节课的教学。新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将以此为基础从教材分析,教学目标分析,教法学法分析和教学过程分析这几个方面加以说明。

  一、教材分析

  1、教材的地位和作用

  函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,它一方面可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步熟悉函数的性质和作用,研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。

  2、教学的重点和难点

  根据这一节课的内容特点以及学生的实际情况,学生对抽象的指数函数及其图象缺乏感性认识。为此,在教学过程中让学生自己去感受指数函数的生成过程以及图象和性质是这一堂课的突破口。因此,指数函数的图像、性质及其运用作为教学重点,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。

  3、课前思考与准备

  包括学生在学习新课前的知识储备,和能力储备,这不意味着我们形式化的给予学生一个预习任务,所以我将通过课前思考题让问题引领学生自觉地投入对新知识的探究之中。我设计了几个简单问题


函数的性质教案5篇(扩展2)

——《正弦函数的性质》说课稿3篇

《正弦函数的性质》说课稿1

  一、教材分析

  1. 地位与重要性

  “正弦函数、余弦函数的图象和性质”一节是高中《数学》第一册(下)的重要内容,这一节共分为四个课时。本课为第二课时,其主要内容是通过观察正弦线、余弦线及正、余弦曲线研究正、余弦函数性质中最基本的定义域与值域。通过对这一节课的学习,既可加深学生对单位圆、正弦线、余弦线及正、余弦函数图象的认识,又可加强学生对三角函数概念的理解,还为后面其它性质的学习作好准备,起到承上启下的重要作用。

  2. 教学目标:

  (1) 能力目标:

  ①培养学生的观察能力、分析能力、归纳能力、表达能力;

  ②培养学生数形结合、类比等思想方法;

  ③培养学生进行数学交流,获得数学知识的能力。

  (2) 情感目标:培养学生勇于探索,勤于思考的精神。

  (3) 知识目标:

  ①使学生正确理解正、余弦函数的定义域、值域的意义;

  ②会求简单函数的定义域、值域。

  3. 教学重、难点:

  重点:正弦、余弦函数的定义域和值域。

  理解并掌握正、余弦函数的定义域、值域是高中数学的重要内容,也是大纲的明确要求。复习好三角函数定义及正弦线、余弦线等有关知识是解决问题的关键。

  难点:有关函数定义域、值域的求解。

  解三角函数问题时,学生普遍存在会而不对,对而不全,造成失误的很大原因来自定义域和值域问题,往往不注意角的范围,在求最值方面更为突出。

  二、教法分析:

  根据上述教材分析,贯彻启发性教学原则,体现以教师为主导,学生为主体的教学思想,深化教学改革,确定本课主要的教法为:

  (1) 讨论式教学:

  通过学生对图形的观察,让学生分组讨论、交流、总结,并发表意见,说出正弦、余弦函数的定义域与值域。

  (2) 讲议结合教学:

  教师适时指导、分析、讲解和提问,并及时对学生的意见进行肯定与评价。

  (3) 电脑多媒体辅助教学:

  借助电脑多媒体引导学生观察图形,使问题变得直观,易于突破;同时其灵活多样的形式可以极大地提高学生的学习兴趣;其软件交互功能可以帮助教师更好地实施教学,加大一堂课的信息量,使教学目标更好的实现。

  三、学法分析:

  数学教学不但要传授学生课本知识,更要培养学生的数学学习能力。在教学活动中,教师提出疑问,引导学生主动观察、主动思考、主动探究、讨论交流;在积极的双边活动中解决疑难,获得知识;整个过程贯穿“疑问”——“思索”——“发现”——“解惑”四个坏节,注重学生思维的持续性和发展性,促进学生数学思维的形成,提高学生的综合素质,实现教学的终极目标。

  四、教学过程:

  在整个教学中,我力求发挥学生自我发现的能力,突出学生的主体地位,以启发、引导为教师的职责。

  1. 复习提问,引入新课

  (1) 通过复习三角函数的定义,由学生直接回答正、余弦函数的定义域;

  教学时注意“类比”函数的定义域(非空的数的集合),使学生进一步理解三角函数中角本身就是实数,明确三角函数的函数本质。

  (2) 通过复习三角函数的几何表示,引导学生观察单位圆中的正弦线MP,余弦线OM,在清楚它们所表示几何意义的基础上,组织学生讨论,得到正、余弦函数的值域。

  再引导学生观察正弦函数、余弦函数的图象,印证所得结论,同时加深对函数图象的认识。

  在这里引导学生多角度观察、思考,开阔学生的思维,培养数形结合的能力。

  (进一步提问:当函数取得最值时,x为何值?

  组织学生讨论:

  ① 当 sinx =1 时,是否 x =π/2 ?

  ② sinx = -1, cosx =±1, 分别对应的x的值的集合?

  通常从单位圆上看,学生容易习惯地将x的范围误认作[0,2π],教学时要引起学生重视,在组织讨论的基础上,加深对定义域、值域的认识。

  这样设计复旧引新,符合学生的认知水*,让学生清楚新、旧知识之间的联系,使学生的知识结构化、系统化;教学中创设问题情境,引导学生多角度思考、分析,培养学生勇于探索、勤于思考的精神;同时经由学生共同努力解决问题,培养学生合作学习和数学交流的能力。

  对于求定义域、值域的一些问题,必须通过具体例题让学生体会。

  2. 例题教学,运用新知

  例1 求下列函数的定义域:

  (1) y = 1 / (1+sinx) , x ∈R;

  (2) y = √cosx , x ∈R .

  通过例1,要使学生熟悉有关函数定义域的求解,其中特别要提醒学生注意所得x值的集合。 同时让学生明确三角函数也是函数这一实质,促使学生主动运用函数的研究方法来学习三角函数。

  例2 求使下列函数取得最大值的自变量 x 的.集合,说出最大值是什么?

  (1) y = cosx +1, x ∈R ;

  (2) y = sin2x, x ∈R .

  通过例2,要使学生正确理解某些与正、余弦函数有关,定义在实数集R上的简单函数取得最大值的自变量x的集合问题,明白具体解答过程;讲解时要特别强调注意角的范围,这是学生最容易出错的地方;其中第(1)小题由学生自己做,第(2)小题对照正弦函数值域的性质,启发学生用换元法解决。还可延伸求其取得--------------

  通过讲解两道例题,突出重点,突破难点;此时,趁学生对于性质有了一个较深的认识,让学生完成以下课堂练习,巩固新知识。

  3. 课堂练习,巩固新知

  (1) (口答)下列各等式能否成立?为什么?

  ①2cosx = 3; ②sin2x = 0.5

  (2) 求下列函数的定义域:

  ①y = 1/ (1-cosx); ②y =√-2sinx .

  (3) 求下列函数取得最小值的自变量的集合,并写出最小值是什么?

  ①y = - 2sinx, x ∈ [ 0, 2π]

  ②y = 2 – cos (x /3), x ∈ [ 0, 2π].

  其中,第(1)题直接考察值域,由学生口答;第(2)、(3)题由学生演板,使学生熟练掌握简单函数定义域、值域的求法。

  4. 归纳总结,掌握新知:

  在教学终结阶段,引导学生对正弦、余弦函数定义域、值域以及数形结合、类比等数学思想进行归纳总结,使学生理清这一节课的重、难点,将所学知识融会贯通。达到本次课的教学目标。

  五、布置作业 :

  布置适量、有针对性的课外作业作为课堂教学的补充。

  1.让学生做教科书习题4.8 T2、9,通过作业反馈学生掌握知识的效果,以便课后解决学生尚有疑难的地方。

  2.布置一道发散性的思考题,进一步深化教学。

  思考题:求下列函数的值域:

  (1) y = sinx + cosx

  (2) y = sinx +√3 cosx

  (3) y = 3sinx + 4cosx

  (4) y = asinx + bcosx

  六、板书设计:

  4.8.2正弦函数、余弦函数的图象和性质

  一、 弦、余弦函数的

  定义域:R

  值域:[-1,1]

  二、例题:

  例1

  解:

  例2

  解:

  三、作业: 习题4.8 T 2、9

  思考题


函数的性质教案5篇(扩展3)

——余弦函数的性质说课稿3篇

余弦函数的性质说课稿1

  一 :教材分析:

  1、 教材的地位与作用:本节课要讲的是正、余弦函数的性质,它是历年高考的重点内容之一,在高考中常以选择题、填空题的形式出现。有时与其它三角变换、函数的一般性质综合。考查灵活,常有创新性。这就要求我们注意运用三角函数的性质培养学生善于运用三角函数的性质解决问题。因此,学好这节课不仅可以为我们今后学习正切、余切函数的性质打下基础,还可以进一步提高学生分析问题和解决问题的能力,它对知识起到了承上启下的作用。

  2、 教学目标的确定:根据教参及教学大纲的要求,依据教学目的以及学生的实际情况,制定如下的教学目标:

  (1) 知识目标:正、余弦函数的性质及应用( 定义域、值域、最大、最小值、奇偶性、单调性)

  (2) 能力目标:a:掌握正、余弦函数的性质;b:灵活利用正、余弦函数的性质

  (3) 德育目标:a:渗透数形结合的思想

  b:培养联合变化的观点

  c:提高数学素质

  3、 教学重点和难点的确定及依据;

  由于正、余弦函数的主要性质在本节中有着重要的地位。因此,成为本节课的重点,在教学中,单调性、奇偶性和周期性是学生第一次接触的三个概念,而函数的单调性、奇偶性以及周期函数,周期,最小正周期的意义是本节教学中学生第一次接触的内容。这在学生的基础上理解有一定的难度。因此成为本节课的难点。那么克服本节课的难点的关键在于复习好正、余弦函数图象的意义,充分利用图形讲清正、余弦函数的特点,梳理好讲解顺序,使学生通过适当的练习正确理解概念、图象、特性、实现教学目标和进一步提高学生的学习探索能力,充分发挥学生的主体作用。

  二:教材处理:

  正、余弦函数的性质,其中定义域、值域、最大值、最小值,学生以前已接触过,所以只需简单提示。但是单调性,奇偶性,周期性是学生第一次接触到的,考虑到学生的基础参差不齐,接受能力不同,因此在教学中要顾全局,耐心讲解,并通过适当的教具启发调动学生的主观能动性。

  三、 教学方法和手段;

  1、教学方法:启发诱导式教学方法,为增强图象的形象直观性,增大教学内容,提高效率。我利用计算机软件,在此基础上,学生运用观察法、发现法、学习法、归纳法以及练习法进行学习,在教学过程中,首先我以习提问形式引入课题,意义使学生利用类比思想,认识到研究三角函数的方向所在,减少盲目性。为了有利于学生正确了解正、余弦图形的性质,我又指导了学生复习正、余弦函数的图象。再从介绍图象的特点让学生观察、发现、归纳函数的性质。同时结合不同例子巩固所学的知识,训练学生的知识应用能力。软件辅助教的充分利用使得教学生动而有条理,使学生认识到数归思想、数形结合在学习知识中的作用。

  2、教学手段:根据本节课的特点,要在正、余弦函数的图象的基础上操作性质,所以有条件的话不防可用动画的形式表现,给学生一种直观形象,不仅激发了学生的创造性思维能力,更起到了事半功倍的效果。

  四、教学过程:

  1、 复习导入:

  通过复习已学过的正、余弦函数的图象,不妨叫学生自己作图,这样不仅复习了上节课的五点作图法,还可以引出新课,正、余弦函数的性质

  2、 新课

  a: 打出多媒体课件,不妨叫学生自己观察正、余弦函数的图象,定义域和值域,最大值,最小值,学生应该都能观察出来,只须稍微强调一下。

  b:周期函数的定义:可有诱导公式sin( x+2k∏ )=sinx

  得出函数值是按一定的规律重复取的,给出定义,讲解定义时,要特别强调“作零常数t”,及“对于定义域的每一值,都要有f(x+t)=f(x)成立,也就是说,如果在定义域内的每一个值使得f(x+t)=f(x)成立。非零常数t就是周期了,不妨举一个例子,

  是否正弦函数的"周期,

  sin(∏/2+x)是否等于sin(x)

  还应强调并不是所有的函数都会有最小正周期。

  c:奇偶性: 在讲解定义时,应该强调,在判断函数是否为奇偶函数时,必须先看其定义域是否关于原点对称,后再由f(x)=f(-x)

  或f(-x)=-f(x),也就是说,定义域关于原点对称,一个函数有奇偶性的必要条件,还应强调并不是所有的函数都有奇偶性,但也有函数既是奇函数,也是偶函数。可以举例说明:

  奇函数一定关于原点对称,偶函数一定关于y轴对称。反之也成立。

  d:在讲解周期性、奇偶性、单调性时可有多媒体课件实现。

  (1)、对称轴:y=sinx 的对称轴是x=k∏+∏/2;

  y=cosx的对称轴是x=k∏ ;

  对称性 ;

  (2)对称中心:y=sinx 的对称中心是(k∏,0)

  y=cosx的对称中心是(k∏+∏/2,0)

  当y=sinx x ∈ [-∏/2+2k∏ , ∏/2+2k∏

  ]时,曲线逐渐上升,y的值由-1逐渐增加到1;

  单调性 x ∈ [∏ /2+2k∏ , ∏/2+2k∏ ]时,曲线逐渐下降,y的值由1逐渐减少到-1;

  当y=cosx x ∈ [-∏+2k∏ , 2k∏ ]时,曲线逐渐上升,y的值由-1逐渐增加到1;

  x ∈ [2k∏ , ∏+2k∏]时,曲线逐渐下降,y的值由1逐渐减少到-1;

  五、例题讲解:

  例1:

  cos(-23∏/5)-cos(-17∏/4)

  问:能否求出上式的值?能否求出其值比0大还是小?须运用我们这节课所学的哪部分知识?

  求上式的值大于0还是小于0?

  ∵y=cosx是偶函数,∴原式为cos(23∏/5)-cos(17∏/4)

  可知cos(23∏/5)< cos(17∏/4)

  即cos(-23∏/5)-cos(-17∏/4) <0

  例2: y=√ sinx + 1

  提出问题:学生能提出什么问题?

  教师引导:上式有没有最大值,最小值,值域,什么时候取得最大值?什么时候取得最小值?奇偶性如何?能不能画出它的图象?图象与y=cosx有什么关系?

  求取的最大值的x的值所有集合。

  当x取最大值时的取值为 x=k∏+∏/2 (k∈r)

  即取的最大值的x的值的所有集合为[x ∣ x=k∏+∏/2 (k∈r)]

  例3:y=√ sinx 的定义域。

  由0 ≦sinx≦1 可得:

  x的定义域为: 2k∏≦x≦∏+2k∏ (k∈r)

  即x的定义域为[2k∏,∏+2k∏] (k∈r)

  问:可不可以求值域?有没有奇偶性?如果有的话,是奇函数还是偶函数?

  拓展:求上式函数的奇偶性。一般来讲,学生会用定义法求出上式既不是奇函数,也不是偶函数。

  结果:上式既不是奇函数,也不是偶函数。

  问:为什么呢?

  强调:函数有奇偶性的必要条件是定义域关于原点对称。

  六、课堂小结:

  通过本节学习,要求掌握正、余弦函数的性质以及性质的简单应用,解决一些相关问题。

  七、作业布置:使学生通过作业进一步掌握和巩固本节内容

余弦函数的性质说课稿2

  一、教材分析

  1、地位和作用

  本节课是《课程标准实验教科书数学必修4》的第一章三角函数的内容,是学习了正弦函数的图像和性质以及余弦函数的图像之后,进一步学习余弦函数的性质。该内容共三个课时,这里讲的是第一课时。正弦、余弦函数的图像和性质是三角函数内容里的重点内容,也是高考热点考察的内容之一。通过本节课的学习,不仅可以培养学生的观察能力,分析问题、解决问题的能力,而且渗透了数形结合、类比、分类讨论等重要的数学思想方法,为高考、为以后的学习打下铺垫。

  2、教学目标

  (1)知识目标:类比正弦函数的性质,观察正弦、余弦函数图像得到余弦

  函数的性质,并掌握性质的应用。

  (2)能力目标:培养学生应用分析、探索、化归、类比和数形结合等数学思想方法在解决问题中的应用能力;培养学生自主探索和自主学习的能力。

  (3)情感目标:让学生亲身经历数学的研究过程,体现发现的激情,享受成功的喜悦,感受数学的魅力;创设和谐融洽的教学氛围和阶梯形问题,使学生在学习活动中获得成功感,从而培养学生热爱数学、积极学习数学、应用数学的热情。

  3、教学重难点:

  (1)重点:从余弦函数的图像得到余弦函数的性质

  (2)难点:余弦函数性质的运用

  求函数的定义域、值域,确定函数的单调区间、奇偶性的判断,对学生来说都是一个难点,应该对这些性质的应用进行多层次练习,通过循环反复、螺旋递进方式进行练习,使学生在练习中掌握余弦函数的性质及应用。

  二、学生的认识水*分析

  (1)知识结构:学生在必修1学习了函数的有关概念,以及几个中学阶段的初等函数,在本章书的第一节介绍了周期函数的概念,角的概念的推广,正弦函数的图像和性质,所以已经具备了这节课的预备知识。

  (2)能力方面:已经具有一定的分析问题,解决问题的能力,函数思想和数形结合思想已经略有了解,在教师的指导下能力目标不难达到。

  (3)情感方面:高一学生参与意识、自主探究意识逐渐增强,能够对认识有冲突的、能够表现自身价值的学习素材比较感兴趣。

  三、教法学法分析

  (1)教学方法:引导发现教学法

  基金项目:广东省教育科学“十五”规划重点课题(JZA020xx)

  为了把发现创造的机会还给学生,把成功的体验让给学生,为了立足于学

  生思维发展,着力于知识的建构,就必须让学生有观察、动手、表达、交流、表

  现的机会,采用引导发现法,可激发学生学习的积极性和创造性,分享到探索知识的方法和乐趣,使数学教学成为再发现,再创造的过程。

  (2)学法指导:根据“倡导积极主动、勇于探索、师生互动”的基本理念,根据教材内容特点以及学生的知识、能力、情感等因素从而把学法定为问题探究学习方法。

  四、教学过程分析

  (一)引入新课:

  (1)弦函数余弦函数的图像;

  (2)观察它们的图像,自主探索两个图像之间的关系,得出两个图像位置间关系的结论:余弦函数的图像可由正弦函数的图像向左*移个单位得到。

  设计意图:通过画出图像,研究图像间的关系,可以培养学生的自主探索、研究问题的能力。

  (二)余弦函数的性质探讨

  (1)从两个图像间的位置关系,小组合作讨论,从两个方面探讨:与位置无关的性质有哪些,与位置有关的性质又有哪些。

  设计意图:让学生小组合作讨论学习,充分体现“新课程、新理念”的思想。

  (2)师生互动:

  一起回顾正弦函数的性质,类比其性质,得到跟位置无关的性质;再结合

  余弦函数的图像,再得到跟位置有关的性质。并对比正弦、余弦函数的性质的异同。

  设计意图:通过学生观察、类比、小组合作讨论得出余弦函数的性质,同时让学生自主发现,类比学习,达到了自主探究学习的目的。也充分体现师生互动的教学模式。

  (三)余弦函数性质的应用

  1、课本例题探讨

  设计意图:立足于课本,让学生熟练掌握函数图像常用的画法—五点法,并通过图像能够观察得到函数的性质。

  2、课本思考交流:

  设计意图:有意识的训练学生借助图像进行分析解决问题的能力,强调图像的作用,渗透数形结合的数学思想方法,并且为下面求函数的定义域打好基础。

  3、典型例题剖析

  例1:求下列函数的定义域

  组A、①;②;

  组B、 ③;④

  设计意图:

  ①为了掌握求函数的定义域的方法,我设计了例1,考虑到学生知识水*的差异性,我安排了A、B两组题,意在让学生根据自己的基础选用适合自己的题组,通过思考每位同学都能自主地完成,从而能让学生都能够体验到,获得知识时的一种成功感、喜悦感,而且又能够充分调动每位学生的学习的热情,体现了师生互动的课堂效果。

  ②通过两组题,着重强调了求函数定义域的关键是转化为解三角不等式,重点突出了图像在解题中的作用,让学生掌握数形结合的思想方法,从而达到了突破本节课的一个难点。

  ③为了满足优生吃不饱的现象,我对求函数的定义域又作了课后展望:

  求函数的定义域,作为课后思考。

  例2:求下列函数的值域:

  (1);(加强条件)

  变式:

  设计意图:

  ①到掌握求函数值域方法,我安排了例2,然后对条件进行加强和变式,让题目由浅入深,螺旋递进,使学生的知识逐渐深化。

  ②对于变式,再让学生小组合作讨论,后针对学生出现的各种情况,讨论的符号对值域的影响,从而培养学生初步分类讨论的思想,有效激励学生探讨问题,掌握知识的方法,同时进一步体现教材的再度开发。

  (2);

  引申:

  设计意图:

  ①使学生把三角函数的内容跟二次函数的内容紧密的联系起来,能够把三角函数求值域转化为熟悉的二次函数求值域,设计了一道有关三角的二次函数求值域的题型。让学生体验知识之间的紧密联系。

  ②对于如何解这类型的题目时,我特别设置错误的结果,有意让学生从错误中比较深刻掌握,换元后的变量的有界性。一定要注意

  ③为了让学生进一步掌握这一类型的方法,我考虑对该题引申为带有参数,

  让学生作为课后展望,这也是再次用到分类讨论思想,进一步培养学生分析问题、讨论问题的完整性、周密性。

  (四)小结:

  本节课由学生进行小结,提出掌握了哪些内容,还有哪些有疑惑。

  设计意图:让学生来说,打破以往由老师小结的一惯做法。

余弦函数的性质说课稿3

  一、教材分析

  1、地位和作用

  本节课是《课程标准实验教科书数学必修4》的第一章三角函数的内容,是学习了正弦函数的图像和性质以及余弦函数的图像之后,进一步学习余弦函数的性质。该内容共三个课时,这里讲的是第一课时。正弦、余弦函数的图像和性质是三角函数内容里的重点内容,也是高考热点考察的内容之一。通过本节课的学习,不仅可以培养学生的观察能力,分析问题、解决问题的能力,而且渗透了数形结合、类比、分类讨论等重要的数学思想方法,为高考、为以后的学习打下铺垫。

  2、教学目标

  (1)知识目标:类比正弦函数的性质,观察正弦、余弦函数图像得到余弦

  函数的性质,并掌握性质的应用。

  (2)能力目标:培养学生应用分析、探索、化归、类比和数形结合等数学思想方法在解决问题中的应用能力;培养学生自主探索和自主学习的能力。

  (3)情感目标:让学生亲身经历数学的研究过程,体现发现的激情,享受成功的喜悦,感受数学的魅力;创设和谐融洽的教学氛围和阶梯形问题,使学生在学习活动中获得成功感,从而培养学生热爱数学、积极学习数学、应用数学的热情。

  3、教学重难点:

  (1)重点:从余弦函数的图像得到余弦函数的性质

  (2)难点:余弦函数性质的运用

  求函数的定义域、值域,确定函数的单调区间、奇偶性的判断,对学生来说都是一个难点,应该对这些性质的应用进行多层次练习,通过循环反复、螺旋递进方式进行练习,使学生在练习中掌握余弦函数的性质及应用。

  二、学生的认识水*分析

  (1)知识结构:学生在必修1学习了函数的有关概念,以及几个中学阶段的初等函数,在本章书的第一节介绍了周期函数的概念,角的概念的推广,正弦函数的图像和性质,所以已经具备了这节课的预备知识。

  (2)能力方面:已经具有一定的分析问题,解决问题的能力,函数思想和数形结合思想已经略有了解,在教师的指导下能力目标不难达到。

  (3)情感方面:高一学生参与意识、自主探究意识逐渐增强,能够对认识有冲突的、能够表现自身价值的学习素材比较感兴趣。

  三、教法学法分析

  (1)教学方法:引导发现教学法

  基金项目:广东省教育科学“十五”规划重点课题(JZA020xx)

  为了把发现创造的机会还给学生,把成功的体验让给学生,为了立足于学

  生思维发展,着力于知识的建构,就必须让学生有观察、动手、表达、交流、表

  现的机会,采用引导发现法,可激发学生学习的"积极性和创造性,分享到探索知识的方法和乐趣,使数学教学成为再发现,再创造的过程。

  (2)学法指导:根据“倡导积极主动、勇于探索、师生互动”的基本理念,根据教材内容特点以及学生的知识、能力、情感等因素从而把学法定为问题探究学习方法。

  四、教学过程分析

  (一)引入新课:

  (1)弦函数余弦函数的图像;

  (2)观察它们的图像,自主探索两个图像之间的关系,得出两个图像位置间关系的结论:余弦函数的图像可由正弦函数的图像向左*移个单位得到。

  设计意图:通过画出图像,研究图像间的关系,可以培养学生的自主探索、研究问题的能力。

  (二)余弦函数的性质探讨

  (1)从两个图像间的位置关系,小组合作讨论,从两个方面探讨:与位置无关的性质有哪些,与位置有关的性质又有哪些。

  设计意图:让学生小组合作讨论学习,充分体现“新课程、新理念”的思想。

  (2)师生互动:

  一起回顾正弦函数的性质,类比其性质,得到跟位置无关的性质;再结合

  余弦函数的图像,再得到跟位置有关的性质。并对比正弦、余弦函数的性质的异同。

  设计意图:通过学生观察、类比、小组合作讨论得出余弦函数的性质,同时让学生自主发现,类比学习,达到了自主探究学习的目的。也充分体现师生互动的教学模式。

  (三)余弦函数性质的应用

  1、课本例题探讨

  设计意图:立足于课本,让学生熟练掌握函数图像常用的画法—五点法,并通过图像能够观察得到函数的性质。

  2、课本思考交流:

  设计意图:有意识的训练学生借助图像进行分析解决问题的能力,强调图像的作用,渗透数形结合的数学思想方法,并且为下面求函数的定义域打好基础。

  3、典型例题剖析:

  例1:求下列函数的定义域

  组A、①;②;

  组B、 ③;④

  设计意图:

  ①为了掌握求函数的定义域的方法,我设计了例1,考虑到学生知识水*的差异性,我安排了A、B两组题,意在让学生根据自己的基础选用适合自己的题组,通过思考每位同学都能自主地完成,从而能让学生都能够体验到,获得知识时的一种成功感、喜悦感,而且又能够充分调动每位学生的学习的热情,体现了师生互动的课堂效果。

  ②通过两组题,着重强调了求函数定义域的关键是转化为解三角不等式,重点突出了图像在解题中的作用,让学生掌握数形结合的思想方法,从而达到了突破本节课的一个难点。

  ③为了满足优生吃不饱的现象,我对求函数的定义域又作了课后展望:

  求函数的定义域,作为课后思考。

  例2:求下列函数的值域:

  (1);(加强条件)

  变式:

  设计意图:

  ①到掌握求函数值域方法,我安排了例2,然后对条件进行加强和变式,让题目由浅入深,螺旋递进,使学生的知识逐渐深化。

  ②对于变式,再让学生小组合作讨论,后针对学生出现的各种情况,讨论的符号对值域的影响,从而培养学生初步分类讨论的思想,有效激励学生探讨问题,掌握知识的方法,同时进一步体现教材的再度开发。

  (2);

  引申:

  设计意图:

  ①使学生把三角函数的内容跟二次函数的内容紧密的联系起来,能够把三角函数求值域转化为熟悉的二次函数求值域,设计了一道有关三角的二次函数求值域的题型。让学生体验知识之间的紧密联系。

  ②对于如何解这类型的题目时,我特别设置错误的结果,有意让学生从错误中比较深刻掌握,换元后的变量的有界性。一定要注意

  ③为了让学生进一步掌握这一类型的方法,我考虑对该题引申为带有参数,

  让学生作为课后展望,这也是再次用到分类讨论思想,进一步培养学生分析问题、讨论问题的完整性、周密性。

  (四)小结:

  本节课由学生进行小结,提出掌握了哪些内容,还有哪些有疑惑。

  设计意图:让学生来说,打破以往由老师小结的一惯做法。


函数的性质教案5篇(扩展4)

——比例的意义和基本性质教案5篇

比例的意义和基本性质教案1

  教学目标:

  1、 理解比例的意义,认识比例各部分名称,初步了解比和比例的区别;理解比例的基本性质。

  2、 能根据比例的意义和基本性质,正确判断两个比能否组成比例。

  3、 在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

  4、 通过自主学习,让学生经经历探究的过程,体验成功的快乐。

  教学重、难点:

  重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。

  难点:自主探究比例的基本性质。

  教学准备:CAI课件

  教学过程:

  一、复习、导入

  1、 谈话:同学们,我们已经学过了比的有关知识,说说你对比已经有了哪些了解?(生答:比的意义、各部分名称、基本性质等。)

  还记得怎样求比值吗?

  2、 课件显示:算出下面每组中两个比的比值

  ⑴ 3:5 18:30 ⑵ 0.4:0.2 1.8:0.9

  ⑶ 5/8:1/4 7.5:3 ⑷ 2:8 9:27

  [评析:从学生已有的知识经验入手,方便快捷,为新课做好准备。]

  二、认识比例的意义

  (一)认识意义

  1、 指名口答上题每组中两个比的比值,课件依次显示答案。

  师问:口算完了,你们有什么发现吗?(3组比值相等,1组不等)

  2、是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:3:5=18:30 。

  (课件显示:“3:5”与“18:30”先同时闪烁,接着两个比下面的比值隐去,再用等号连接)

  最后一组能用等号连接吗?为什么?(课件显示:最后一组数据隐去)

  数学中规定,像这样的一些式子就叫做比例。(板书:比例)

  [评析:通过口算求比值,发现有3组比值相等,1组不等,自然流畅地引出比例。有效的课堂教学,就需要像这样做好已有经验与新知识的衔接。]

  3、今天这节课我们就一起来研究比例,你想研究哪些内容呢?

  (生答:想研究比例的意义,学比例有什么用?比例有什么特点……)

  5、 那好,我们就先来研究比例的意义,到底什么是比例呢?观察这些式子,你能说出什么叫比例吗?

  (根据学生的回答,教师抓住关键点板书:两个比 比值相等)

  同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。

  课件显示:表示两个比相等的式子叫做比例。

  学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

  [评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生读一读,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。]

  (二)练习

  1、 出示例1 根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。

  第一次

  第二次

  买练习本的钱数(元)

  1.2

  2

  买的本数

  3

  5

  (1)学生独立完成。

  (2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。

  2、完成练习纸第一题。

  一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。

  ⑴分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

  ⑵分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?

  [评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。练习1其实是对例题的巧妙补充。]

  3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?

  (引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)

  4、教学比例各部分的名称

  (1) 课件出示: 3 : 5

  前项 后项

  (2) 课件出示:3 : 5 = 18 : 30

  内项

  外项

  (3) 如果把比例写成分数的形式,你能指出它的内、外项吗?

  课件出示:3/5=18/30

  [评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]

  5、小结、过渡:

  刚才我们已经研究了比例的意义、各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

  三、探究比例的基本性质

  1、课件先出示一组数:3、5、10、6

  再出示:运用这四个数,你能组成几个等式?(等号两边各两个数)

  2、 独立思考,并在作业本上写一写。

  学生组成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……

  根据学生回答板书: 3×10=5×6 3:5=6:10

  3:6=5:10

  5:3=10:6

  6:3=10:5

  3、 引导发现规律

  (1)还有不同的乘法算式吗?(没有,交换因数的位置还是一样)

  乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不同,因为比值各不相同)

  (2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?

  (3)学生先独立思考,再小组交流,探究规律。

  (板书:两个外项的积等于两个内项的积。)

  [评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]

  4、验证:是不是任意一个比例都有这样的规律?

  ⑴课件显示复习题(4组),学生验证。

  ⑵学生任意写一个比例并验证。

  ⑶完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

  [评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]

  5、思考3/5=18/30是那些数的乘积相等。课件显示:交叉相乘。

  6、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)

  四、 综合练习

  完成练习纸2、3、4

  附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。

  14 :21 和 6 :9

  1.4 :2 和 5 :10

  3、判断下面哪一个比能与 1/5:4组成比例。

  ①5:4 ② 20:1

  ③1:20 ④5:1/4

  4、在( )里填上合适的数。

  1.5:3=( ):4

  =

  12:( )=( ):5

  [评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]

  五、全课总结(略)

比例的意义和基本性质教案2

  教学内容:

  课本第1~2页例1、例2,练习一第1、2、3题,比例的意义和基本性质。

  教学目的:

  1.理解和掌握比例的意义和基本性质,认识比例的各部分名称。

  2.培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。

  3.使学生进一步受到“实践出真知”的辩证唯物主义观点的启蒙教育。

  教学重点:理解比例的意义和基本性质。

  教学难点:应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。

  教学关键:

  观察众多的实例,概括出比例意义的过程;找出在比例里两个内项的积与两个外项的积相等的规律。

  教具:投影片、小黑板

  教学过程:

  一、谈话导入,创设情境

  (一)教师出示投影,结合画面谈话引入。

  师:同学们看了我们祖国各地的风景图片,美吗?我们的祖国方圆960万*方公里,幅员之辽阔,却能在一张小小的地图上清晰可见各地位置;科学家在研究很小很小的生物细胞时,想清楚地看见细胞各部分,就要借助显微镜将细胞按比例放大。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。

  教师板书课题:比例的意义和基本性质。

  (二)让学生完成教材第1页复习题,根据学生回答教师板书:10:6=4.5:2.7。

  二、自主探究,学习新知

  (一)教学比例的意义

  1.合作互动,探求共性。

  先让学生在小组活动中完成“活动内容1”。

  活动内容1:

  (1)根据表中给出的数量写有意义的比。

  (2)观察写出的比,哪些比能用等号连接,为什么?

  (3)根据比与分数的关系,这样的式子还可以怎样写?

  然后让学生汇报活动情况,小学数学教案《比例的意义和基本性质》。结合学生回答,教师任意板书几个比例式。(如80:2=200:5, = ,2:5=80:200,5:200=2:80……)并指出这些式子就是比例。

  2.抽象概括,及时巩固。

  (l)教师指导学生观察以上比例式,概括出共性。

  (2)让学生用自己的"语言描述比例的意义。并板书:表示两个比相等的式子叫做比例。

  (3)完成第2页“做一做”,并说明理由。

  (4)让学生自己举出两个比例,并说明理由。

  (二)教学比例的基本性质。

  1.认识比例各部分名称。

  (l)让学生查阅教材,认识比例各部分的名称。根据学生汇报,教师板书:“内项”、“外项”。

  (2)让学生观察自己刚才举的比例,找出它的内项、外项。

  (3)引导学生观察把比例写成分数形式,比例的外项和内项的位置又是怎样的?教师板书:

  2.引导学生发现比例的基本性质。

  (1)让学生小组活动完成以下活动内容2:

  活动内容2:

  ①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。

  ②如果把比例写成分数形式,是否也有如上面发现的规律?

  ③是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。

  ④通过以上研究,你发现了什么?

  (2)学生汇报活动情况,认识到任何比例的两个内项的积与两个外项的积都存在相等的关系。

  (3)指导学生概括出比例的基本性质,并完成板书。

  三、分层练习,辨析理解

  1.完成练习一第1题区别比与比例。

  2.先让学生解答第2页“做一做”第l题,然后引导学生小结:判断两个比能否组成比例,不仅可以应用比例的意义,而且可以应用比例的基本性质。

  3.完成练习一第2题。

  4.下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。

  2、3、4和6

  四、全课总结

  先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。

  五、课堂作业

  练习一第3题。

比例的意义和基本性质教案3

  设计说明

  本节课的教学内容包含“比例的意义和比例的基本性质”两部分。本节课的内容是这个单元的起始,属于概念教学,是为以后解比例,讲解正比例、反比例做准备的。学生学好这部分的知识,不仅可以初步接触函数的思想,还可以解决日常生活中的一些具体问题。遵循“自主探索与合作交流”的《数学课程标准》理念,本节课在教学设计上有以下特点:

  1.重视有效学习情境的创造。

  新课伊始,通过谈话激活学生对*的已有认识,引出本节课要用的**的三种不同规格的相关数据,激发学生的学习兴趣,使学生在熟悉的现实情境中,情绪饱满地进入到对比例知识的探究学习中。

  2.重视引导学生自主探究。

  教学比例的意义时,先引导学生依据三面*的长与宽写出多个比,再引导学生发现它们的比值相等,可以写成一个等式,引出比例,最后引导学生通过自己的分析、思考,进行归纳总结出比例的意义。

  3.重视引导学生合作交流。

  《数学课程标准》指出:“合作交流是学生学习数学的重要方式。”为此,我们在教学中,不但要引导学生进行自主探究,还要引导学生进行合作交流。以“比例的基本性质”的探究为例,在教学中,通过小组合作交流,让学生思维互补,既有利于知识的学习,又有利于学生概括能力及语言表达能力的培养。

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙渗透情感,导入新课

  1.课件出示*画面,学生观察,激发爱国情操。

  (*升*仪式、校园升旗仪式、教室场景)

  师:这三幅不同的场景都有共同的标志——*,*是中华人民共和国的象征;这些*有大有小,你知道这些*的长和宽分别是多少吗?

  2.课件出示*的长和宽,并提出问题。

  *升旗仪式上的*:长5 m,宽 m。

  操场升旗仪式上的*:长2.4 m,宽1.6 m。

  教室里的*:长60 cm,宽40 cm。

  师:这些*的大小不一,是不是*想做多大就做多大呢?是不是这中间隐含着什么共同的特点呢?

  3.导入新课。

  师:每面*的大小不一样,但是它们的长和宽中却隐含着共同的特点,是什么呢?这节课我们就结合*的知识来学习比例的意义和基本性质。

  (板书课题:比例的意义和基本性质)

  设计意图:通过谈话,激发学生的爱国情感和求知欲,在加强学生对*知识了解的同时,有效地引入学习资源,为学生探究比例的意义和基本性质提供第一手资料。

  ⊙合作交流,探究新知

  1.教学比例的意义。

  (1)自主尝试。

  课件出示教材40页主题图,根据图中给出的数据分别写出不同场景*旗的长和宽的比,并求出比值。

  (2)汇报、交流。

  预设

  生1:*升旗仪式上的*。

  长∶宽=5∶=

  生2:操场升旗仪式上的*。

  长∶宽=2.4∶1.6=

  生3:教室里的*。

  长∶宽=60∶40=

  (3)感知比例的意义。

  观察写出的比,想一想,这些比能用等号连接吗?为什么?用等号连接的两个比的式子可以怎样写?

  预设

  生1:可以用等号连接,因为它们的比值相等。

  “2.4∶1.6=”和“60∶40=”可以写作“2.4∶1.6=60∶40”。

  生2:可以用等号连接,两个比的比值相等,说明这两个比也是相等的。

  生3:根据比与分数的关系,“2.4∶1.6=60∶40”

  也可以写成“=”。

比例的意义和基本性质教案4

  教学内容

  教科书第48~50页例1、例2,课堂活动及练习十一1,2题。

  教学目标

  1.理解比例的意义,认识比例各部分的名称。

  2.让学生经历探讨两内项之积等于两外项之积的过程,使之更好理解并掌握比例的基本性质。并能运用比例的意义和比例的基本性质,判断两个比能否组成比例,会组比例。

  3.培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。

  教学重点

  理解比例的意义和基本性质。

  教学难点

  应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。

  教学准备

  课件,扑克牌10张(2~10以及A),圆规一个。

  教学过程

  一、复习准备

  (1)一辆汽车4时行160 km,路程和时间的比是多少?这个比表示什么?

  (2)求下面各比的比值,你发现了什么?

  12∶16 34∶18 4.5∶2.7 10∶6

  教师:同学们发现4.5∶2.7和10∶6的结果是一样的,说明了什么?(这两个比相等。)这两个比你能用等号连接起来吗?(能。)请同学们用等号把这两个比用等号连接起来。

  二、探究新知

  1.提出问题

  这节课我们在比的知识基础上,进一步学习新知识。

  揭示课题--比例的意义和基本性质。板书:比例的意义和基本性质

  2.探究比例的意义

  课件出示例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。列表如下:

  竹竿长26

  影子长39

  教师:观察上表,你能写出多少个有意义的比?并求出比值。把这些比都写出来。

  学生讨论并写出比,完成后抽几个学生的作业在视频展示台上展示,教师选几个有代表性的比在黑板上板书。

  教师:观察这些比,哪些能用等号连接?把能用等号连接的比用等号连接起来。

  学生口答,教师板书:3∶2=9∶6,6∶2=9∶332=96,62=93

  教师:这些都是比例。你能用自己的语言说一说什么是比例吗?

  引导学生用自己的语言归纳比例的意义。(板书:比例的意义)

  教师:2∶9和3∶6能组成比例吗?你是怎么知道的?

  指导学生说出判断两个比能不能组成比例,要看他们的比值是否相等。再判断2∶5和80∶200能否组成比例?并说明理由。

  组织并指导学生完成书上第50页的课堂活动。

  3.认识比例的各部分

  教师:在一个比例里,有四个数,这四个数分别叫什么名字?同学们看看书就明白了。

  指导学生看书后汇报。

  教师:请同学们分别找出3∶2=9∶6和6/2=9/3的内项和外项。

  学生找出后,随学生的汇报教师板书:

  要求学生找出刚才自己说的几个比例的内项和外项,然后引导学生分析归纳出:在比例里,靠近等号的两个数是内项,剩下的两个数是外项;如果写成分数形式,那么可以用交叉的方法找出比例的内项和外项。

  4.教学比例的基本性质

  教师:前面我们已经探究发现了比例的一个秘密,就是组成比例的两个比的比值相等,比例还有一个秘密,你们愿意去寻找吗?(愿意)你们任意找一个比例,把它们的内项和外项分别乘起来,又可以发现什么?

  学生初步发现两个内项的积等于两个外项的积后,教师提醒学生:是不是每个比例都有这个规律,多找几个比例试一试,如果把这个比例写成分数形式,它是不是也有这样的规律呢?

  教师:同学们通过多个比例的探究,发现它们都有这个规律。你能用你自己的语言归纳这个规律吗?

  指导学生归纳后,教师板书:在比例里,两个内项的积等于两个外项的积,并且告诉学生,这就是比例的基本性质。

  5.运用比例的基本性质判断两个比是否能组成比例

  教师:用比例的基本性质,也可以判断两个比能不能组成比例。请同学们用比例的基本性质判断一下,0.4∶25能否和1.2∶75组成比例?为什么?

  学生讨论后回答:因为0.475=251.2,所以0.4∶25和1.2∶75能组成比例。

  三、巩固提高

  (1)说一说比和比例有什么区别。

  讨论后指名说:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四项。

  (2)在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()()=()()。

  (3)下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。2,3,4和6

  四、全课总结

  先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。

  五、课堂作业

  (1)指导学生完成练习十一的第1题。

  要求:第(1)小题用比的意义来判断,第(2)小题用比例的基本性质判断,第(3),(4)小题学生自由选择方法判断。

  (2)学生独立完成练习十一的第2题,教师订正。

比例的意义和基本性质教案5

  教学目标:

  (1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。

  (2)认识比例的各部分名称。

  (3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。

  教学重点难点:

  理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。

  教具学具准备:幻灯片、学习卡。

  教学过程:

  一、创设情景,引入新课。

  出示三幅场景图。

  (1)图上描述的是什么情景?这几幅图都与什么有关?

  (2)这三面*有什么相同和不同的地方?(形状相同,大小不同)

  (3)你们有见过这样的*吗?或者这样的?

  我们的*,不论大小,之所以形状相同,是因为它们都是按照一定的比例来制作的,从今天开始,我们将要学习有关比例的知识。板书课题

  二、自主探究,明确意义

  1、提问:你们知道每一幅图*旗的长和宽分别是多少吗?

  2、谈话:在制作*的过程中存在着有趣的比。请同学们拿出第一张自主学习卡,算一算这三幅*的长、宽之比,求出比值,并同桌互相说一说你有什么发现?

  3、学生汇报。

  4、我们以操场上和教室里的*为例,2.4:1.6= ,60:40= ,这两个比的比值相等,中间可以用等号连接起来,写成2.4:1.6=60:40,因为比还可以写成分数形式,所以还可以写成=。

  像这样表示两个比相等的式子叫做比例。(板书)

  5、在上图的三面*的尺寸中,还有哪些比可以组成比例?

  6、深入探讨:

  (1)比例有几个比组成?

  (2)是不是任意两个比都能组成比例?

  (3)判断两个比能不能组成比例,关键要看什么?

  7、完成“做一做”。

  三、探究比例的基本性质。

  1、学习比例各部分的名称。

  教师:我们知道组成比的两个数分别叫前项和后项,组成比例的四个数也有自己的名字,你们知道它们分别叫什么吗?(课件出示)

  (1)指名读一读有关知识。

  (2)谁来介绍一下在2.4:1.6=60:40中,内项和外项分别是谁?

  随着学生的回答教师出示:

  2.4: 1.6 = 60: 40 (外项)(内项)

  └-内项-┘ =

  └------外项-------┘ (内项)(外项)

  (3)如果把比例写成分数形式,你能找出它的内项和外项吗?

  (4)任意选择一个比例式,标出内项、外项,同桌两人互相检查。

  2、研究比例的基本性质。

  (1)活动探究,总结性质。

  谈话:比有基本性质,比例表示两个比相等的式子,也有它特有的性质,请同学们拿出2号自主学习卡,小组讨论一下,写一写,算一算,解决以下问题。

  ①计算下面比例中两个外项的积和两个内项的积,比较一下,你能发现什么?

  2.4:1.6=60:40 =

  ②你能举一个例子,验证你的发现吗?

  ③你能得出什么结论?

  ④你能用字母表示这个性质吗?

  (2)运用性质。

  ①提问:学了比例的基本性质,你觉得运用它能解决什么问题?

  ②运用比例的基本性质,判断下面哪组中的两个比可以组成比例。

  (1) 6:3和8:5 (2) 0.2:2.5 和 4:50

  (3) :和 : (4) 1.2: 和 :5

  四、巩固练习。

  1、填空

  (1)在a:7=9:b中,( )是内项,( )是外项,a×b=( )。

  (2)一个比例的两个内项分别是3和8,则两个外项的积是( ),两个外项可能是( )和( )。

  (3)在一个比例里,两个外项互为倒数,那么两个内项的积是( ),如果一个外项是 ,另一个外项是( )。

  (4)在比例里,两个内项的积是18,其中一个外项是2,另一个外项是( )。

  (5)如果5a=3b,那么, = , = 。

  2、判断。

  (1)在比例中,两个外项的积减去两个内项的积,差是0。( )

  (2)18:30和3:5可以组成比例。( )

  (3)如果4X=3Y,(X和Y均不为0),那么4:X=3:Y。( )

  (4)因为3×10=5×6,所以3:5=10:6。( )

  3、把下面的等式改写成比例:(能写几个写几个)

  16 × 3 = 4 × 12

  四、总结归纳

  1、这节课我们学习了什么知识?你有什么收获?

  2、判断两个比能不能组成比例,有几种方法?

  比例在生活中有着广泛的应用,比如:警察可以根据脚印的长短判断罪犯的大致身高,根据影子的长度可以算出一棵大树的高度等,都与比例有关,我们只要认真学好比例,就一定能帮助我们了解其中的奥秘。

  板书设计

  比例的意义和基本性质

  表示两个比相等的式子叫做比例。

  2.4: 1.6 = 60: 40 (外项)(内项)

  └-内项-┘ 或 =

  └------外项-------┘ (外项)(内项)

  在比例里,两个外项的积等于两个内项的积。

  A:B=C → AD=BC


函数的性质教案5篇(扩展5)

——《函数的概念》教案3篇

《函数的概念》教案1

  一、教学目标

  1、知识与技能:

  函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.

  2、过程与方法:

  (1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

  (2)了解构成函数的要素;

  (3)会求一些简单函数的定义域和值域;

  (4)能够正确使用“区间”的符号表示某些函数的定义域;

  3、情态与价值,使学生感受到学习函数的必要性的重要性,激发学习的积极性。

  二、教学重点与难点:

  重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;

  难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

  三、学法与教学用具

  1、学法:学生通过自学、思考、交流、讨论和概括,从而更好地完成本节课的教学目标.

  2、教学用具:投影仪.

  四、教学思路

  (一)创设情景,揭示课题

  1、复习初中所学函数的概念,强调函数的模型化思想;

  2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

  (1)炮弹的射高与时间的变化关系问题;

  (2)南极臭氧空洞面积与时间的变化关系问题;

  (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题

  3、分析、归纳以上三个实例,它们有什么共同点。

  4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

  5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

  (二)研探新知

  1、函数的有关概念

  (1)函数的概念:

  设a、b是非空的数集,如果按照某个确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有唯一确定的数f(x)和它对应,那么就称f:a→b为从集合a到集合b的一个函数(function).

  记作:y=f(x),x∈a.

  其中,x叫做自变量,x的取值范围a叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈a}叫做函数的值域(range).

  注意:

  ①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

  ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

  (2)构成函数的三要素是什么?

  定义域、对应关系和值域

  (3)区间的概念

  ①区间的分类:开区间、闭区间、半开半闭区间;

  ②无穷区间;

  ③区间的数轴表示.

  (4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?

  通过三个已知的函数:y=ax+b(a≠0)

  y=ax2+bx+c(a≠0)

  y=(k≠0)

  比较描述性定义和集合,与对应语言刻画的定义,谈谈体会。

  师:归纳总结

《函数的概念》教案2

  今天我说课的内容是函数的近代定义也就是函数的第一课时内容。

  一、教材分析

  1、教材的地位和作用:

  函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中学生对函数概念理解的程度会直接影响数学其它知识的学习,所以函数的第一课时非常的重要。

  2、教学目标及确立的依据:

  教学目标:

  (1)教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。

  (2)能力训练目标:通过教学培养学生的抽象概括能力、逻辑思维能力。

  (3)德育渗透目标:使学生懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。

  教学目标确立的依据:

  函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮助学生学好其他的数学内容。而掌握好函数的概念是学好函数的基石。

  3、教学重点难点及确立的依据:

  教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。

  教学难点:映射的概念,函数近代概念,及函数符号的理解。

  重点难点确立的依据:

  映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的学生来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来高考有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。

  二、教材的处理:

  将映射的定义及类比手法的运用作为本课突破难点的关键。函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使学生真正对函数的概念有很准确的认识。

  三、教学方法和学法

  教学方法:讲授为主,学生自主预习为辅。

  依据是:因为以新的观点认识函数概念及函数符号与运用时,更重要的是必须给学生讲清楚概念及注意事项,并通过师生的共同讨论来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想和知识结构中打上深刻的烙印,为学生能学好后面的知识打下坚实的基础。

  四、教学程序

  一、课程导入

  通过举以下一个通俗的例子引出通过某个对应法则可以将两个非空集合联系在一起。

  例1:把高一(12)班和高一(11)全体同学分别看成是两个集合,问,通过“找好朋友”这个对应法则是否能将这两个集合的某些元素联系在一起?

  二.新课讲授:

  (1)接着再通过幻灯片给出六组学生熟悉的数集的对应关系引导学生总结归纳它们的共同性质(一对一,多对一),进而给出映射的概念,表示符号f:A→B,及原像和像的定义。强调指出非空集合A到非空集合B的映射包括三部分即非空集合A、B和A到B的对应法则f。进一步引导学生总结判断一个从A到B的对应是否为映射的关键是看A中的任意一个元素通过对应法则f在B中是否有唯一确定的元素与之对应。

  (2)巩固练习课本52页第八题。

  此练习能让学生更深刻的认识到映射可以“一对多,多对一”但不能是“一对多”。

  例1.给出学生初中学过的函数的传统定义和几个简单的一次、二次函数,通过画图表示这些函数的对应关系,引导学生发现它们是特殊的映射进而给出函数的近代定义(设A、B是两个非空集合,如果按照某种对应法则f,使得A中的任何一个元素在集合B中都有唯一的元素与之对应则这样的对应叫做集合A到集合B的映射,它包括非空集合A和B以及从A到B的对应法则f),并说明把函f:A→B记为y=f(x),其中自变量x的取值范围A叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{f(x):x∈A}叫做函数的值域。

  并把函数的近代定义与映射定义比较使学生认识到函数与映射的区别与联系。(函数是非空数集到非空数集的映射)。

  再以让学生判断的方式给出以下关于函数近代定义的注意事项:

  2.函数是非空数集到非空数集的映射。

  3.f表示对应关系,在不同的函数中f的具体含义不一样。

  4.f(x)是一个符号,不表示f与x的乘积,而表示x经过f作用后的结果。

  5.集合A中的数的任意性,集合B中数的唯一性。

  6.“f:A→B”表示一个函数有三要素:法则f(是核心),定义域A(要优先),值域C(上函数值的集合且C∈B)。

  三.讲解例题

  例1.问y=1(x∈A)是不是函数?

  解:y=1可以化为y=0+1

  画图可以知道从x的取值范围到y的取值范围的对应是“多对一”是从非空数集到非空数集的映射,所以它是函数。

  [注]:引导学生从集合,映射的观点认识函数的定义。

  四.课时小结:

  1.映射的定义。

  2.函数的近代定义。

  3.函数的三要素及符号的正确理解和应用。

  4.函数近代定义的五大注意点。

  五.课后作业及板书设计

  书本P51习题2.1的1、2写在书上3、4、5上交。

  预习函数三要素的定义域,并能求简单函数的定义域。

《函数的概念》教案3

  一、教材分析

  本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1函数的概念》共3课时,本节课是第1课时。

  托马斯说:“函数概念是近代数学思想之花”。生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。

  函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。函数的的重要性正如*所说:“数学中的转折点是笛卡尔的变数,有了变数,运动就进入了数学;有了变数,辩证法就进入了数学”。

  二、学生学习情况分析

  函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段:

  (一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数;

  (二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数;

  (三)高中用导数工具研究函数的单调性和最值。

  1.有利条件

  现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的.,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。

  初中用运动变化的观点对函数进行定义的,它反映了历史上人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。

  2.不利条件

  用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。

  三、教学目标分析

  课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.

  1.知识与能力目标:

  ⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性;

  ⑵理解函数的三要素的含义及其相互关系;

  ⑶会求简单函数的定义域和值域

  2.过程与方法目标:

  ⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型;

  ⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.

  3.情感、态度与价值观目标:

  感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。

  四、教学重点、难点分析

  1.教学重点:对函数概念的理解,用集合与对应的语言来刻画函数;

  重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。但是,初中定义并未完全揭示出函数概念的本质,对y1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。

  突出重点:重点的突出依赖于对函数概念本质属性的把握,使学生通过表面的语言描述抓住概念的精髓。

  2.教学难点:第一:从实际问题中提炼出抽象的概念;第二:符号“y=f(x)”的含义的理解.

  难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。

  突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。

  五、教法与学法分析

  1.教法分析

  本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。

  2.学法分析

  在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。


函数的性质教案5篇(扩展6)

——化学教案《氧气的性质》3篇

化学教案《氧气的性质》1

  目标要求

  1、知识与技能:认识氧气的化学性质,了解氧气的物理性质。

  2、过程与方法:通过学习物理变化、化学变化;化合反应、氧化反应,学会比较分析的方法。

  3、情感态度与价值观:通过认识物质在氧气中燃烧现象的不同,培养辩证观点和严谨求实的科学态度。

  重点、难点、疑点:

  重点:氧气的化学性质

  难点:物理变化与化学变化的关系,氧化反应的理解。

  疑点:实验现象不同的原因。

  课型:

  探究式

  课时:

  二课时

  实验准备:

  集气瓶、燃烧匙、酒精灯、硫、木炭、铁丝、火柴

  第一课时

  教学过程:

  1、复习旧识:

  1)空气的组成是什么?

  2)什么是空气污染,如何防治?

  3)什么是物理性质

  2、情景导入

  出示一幅蓝天、白云、草地、人、动物图片和氧气应用的图片

  3、探究新课:

  一、氧气的`物理性质:

  出示一瓶氧气,指出它的物理性质

  1.常温下是无色、无味的气体。

  2.标准状况下,密度为1.429g/L,比空气( 1.293g/L)略大。

  3.不易溶于水,在室温下,1L水中只能溶解30mL氧气。

  4.在压强101kPa时,氧气在-183℃时变为淡蓝色液体,在-218 ℃时变为淡蓝色雪花状的固体。

  二、氧气的化学性质。

  [实验2—2]、[实验2-3]、[实验2-4]

  通过实验填写下表:

  结论:

  1.燃烧在纯氧中进行比空气中进行得更旺。

  2.某些在空气中不能燃烧的物质,在纯氧中却能燃烧。

  说明:

  1.氧气的化学性质比较活泼。

  2.物质在空气中燃烧,实际是跟其中的氧气反应。

  练习:课后习题

  课后反思:

  第二课时

  回顾旧识:

  氧气的物理和化学性质如何?

  探究新课

  分析讨论

  1:填写下表:

  分析讨论2:上述三个反应有什么共同的特征?

  结论:

  1.在这三个反应中,都有新的物质(与原来物质不一样的)生成。

  2.生成新的物质的变化叫做化学变化,也叫做化学反应。

  3.没有生成新的物质的变化叫做物理变化。

  分析讨论3:

  化学变化的特征是什么?在化学变化时常伴随哪些现象发生?

  结 论: 1.化学变化的特征是有新物质生成。

  2.常伴随的现象是颜色的改变、放出气体、生成沉淀。

  3.发生能量的变化,常以放热、发光的形式表现出来。

  4.这些现象可以帮助我们判断有没有发生化学变化。

  5.在化学变化过程中同时发生物理变化。

  分析讨论4:上述三个反应中还有一个什么样的共同特征?

  结论:它们都是由两种物质起反应生成另一种物质。

  定义:由两种或两种以上的物质生成另一种物质的反应——化合反应

  特 点:多变一

  分析讨论5:三个反应还有没有共同的特征?

  结论:它们都是物质与氧气反应——氧化反应

  定 义:物质跟氧发生的反应。

  缓慢氧化:呼吸、食物腐烂、酒和醋的酿造、农家肥的腐熟

  总结:

  1、物质变化的两种形式:

  物理变化:没有生成新物质

  化学变化:生成新物质

  2、物质性质的两个方面:

  物理性质:直接被感知(色、味、态)被测量的性质(熔、沸点;硬、密度、溶解性)

  化学性质:化学变化中表现出来的

  3、化学反应的两种分类

  从反应形式上分类的基本反应类型之一:化合反应

  从是否与氧反应:氧化反应(生成氧化物)

  练习:课后习题

  课后反思:

化学教案《氧气的性质》2

  教学目标

  1、 初步学会制取氧气的方法。

  2、 认识氧气的化学性质。

  3、 学习探究气体性质的方法。

  4、 增强对化学现象的探究欲,培养学习化学的兴趣。

  重点难点

  教学重点:氧气的化学性质及制法

  教学难点:有关氧气性质的实验设计

  教学内容分析

  实验用品

  教学过程

  探究目标:

  1、探究最适合实验室制取氧气的方法

  2、明确实验室制取氧气的发生装置和收集装置

  提出问题:

  1、如何选择最适合实验室制取氧气的方法?依据是什么?

  2、如何收集一瓶氧气?

  3、如何检验一瓶氧气已收集满?

  收集资料:

  1、回顾一下,写出你所知道的制氧气的一种方法。

  2、自然界中氧气的主要来源

  情境创设:下列谜语是什么物质呢?

  无影无形摸不着,火焰见它跳的高。

  呼吸作用它参加,动物生长离不了。

  你一定猜到了是氧气。氧气如此重要,你一定想自己动手制取氧气吧?

  设计实验并进行验证:

  步骤和方法 现象 分析和结论

  取A、B、C三支试管,分别加入3-5ml的过氧化氢溶液。

  1、 将带火星的木条伸入A试管口,观察现象。

  2、 在B试管中加入少量二氧化锰,将带火星的木条伸入B试管口,观察现象。

  3、 在C试管中加入几块沸石(或瓷片),将带火星的木条伸入C试管口,观察现象。

  是否明显有气泡产生?

  速度快还是慢?

  木条

  是否明显有气泡产生?

  速度快还是慢?

  木条

  是否明显有气泡产生?

  速度快还是慢?

  木条

  比较三种方法,你认为最适合实验室制取氧气的方法是

  依据是

  用下图所示装置制取一瓶氧气。

  1、 组装一套实验室制取氧气的装置。在广口瓶内先加入少量二氧化锰,再通过长颈漏斗添加过氧化氢溶液。

  2、 收集氧气。

  先将集气瓶中盛满水,用玻璃片盖住瓶口,然后倒立在水槽中。当导管口有气泡连续、均匀地放出时,再把导管口伸入盛满水的集气瓶里,等瓶里的水排完以后,在水里用玻璃片盖住瓶口,把集气瓶移出水面,正放在桌面上。

  实验时 (有或没有)气泡冒出

  收集到的氧气是 色 的气体

  判断一瓶氧气已收集满的依据是

  实验时,填加长颈漏斗的优点是

  实验过程中,长颈漏斗的底部必须液封在液面以下的原因

  当导管口刚开始有气泡地放出时,不宜立即收集,这是因为

  分析归纳:在过氧化氢制氧气的实验中,加入二氧化锰(或沸石),能加快过氧化氢的分解速率,那么二氧化锰(或沸石)在此实验中起什么作用呢?

  交流与反思:实验室用过氧化氢溶液制取O2 :

  反应物 ,状态 ,条件 ,

  收集方法 , 。

  知识应用:

  1、常温下,某气体难溶于水,密度比空气大,收集该气体可采用的方法是( )。

  (A)向上排空气法 (B)排水法(C)排水法或向下排空气法(D)排水法或向上排空气法

  2、过氧化氢溶液在二氧化锰作催化剂的条件下能迅速分解产生氧气,分液漏斗可以通过调节活塞控制液体的滴加速度。根据下图所示回答问题:

  (1)分液漏斗中放入的物质是 ,锥形瓶中放入的物质是 ;

  (2)写出该方法制取氧气的文字表达式 ;

  要收集一瓶纯净的氧气,应选择装置 (填字母);

  (3)某同学在观察到锥形瓶内有大量气泡时,开始用B装置收集氧气,过一段时间后,用带火星的木条伸入瓶口、瓶中、瓶底,都未见木条复燃。原因是 。

  探究课题:氧气的性质

  探究目标:

  1、探究氧气的物理性质

  2、探究氧气的化学性质

  提出问题:

  1、充满氧气的集气瓶为什么应瓶口向上放在桌面上?

  2、 中鱼儿能生存,说明水中氧气的溶解性是不溶于水还是不易溶于水?

  3、 如何证明一瓶气体是氧气?

  收集资料:

  1、抢救病人的时候要用到氧气,说明氧气具有 性质。

  2、家里生炉子时,用扇子煽,炉火越扇越旺,说明氧气具有性质。

  做出假设:氧气是一种化学性质的气体。

化学教案《氧气的性质》3

  学习目标

  教师讲解实验细节:

  (1) 铁丝系上一根火柴的作用?

  (2) 铁丝绕成螺旋状的原因?

  (3) 若某同学做铁丝在氧气中的燃烧实验失败,原因是什么?

  提示学生从铁丝的情况和燃烧条件两个方面去思考

  【归纳】

  氧化反应

  1.剧烈氧化——如燃烧、火药爆炸等

  2.缓慢氧化——如动植物的新陈代谢、金属器皿的锈蚀、食物的腐烂、有机肥的腐熟

  【小结】

  1.共同点:都属于氧化反应,需要消耗氧气,都放热

  2.不同点:

  (1)剧烈氧化: 剧烈、速度快、放热多,伴随着发光、发热

  (2)缓慢氧化: 不易被察觉,速度慢,放热少。

  【活动】

  性质决定用途

  许多物质能够在氧气中燃烧——广泛应用。

  【阅读】课本P53—54归纳用途

  【用途一】支持燃烧——助燃剂

  【用途二】供给呼吸

  【课堂小结】

  氧气是一种化学性质比较活泼的气体,氧气能供给呼吸、支持燃烧具有助燃性(不是可燃性,不能作燃料)

  【课堂检测】

  1.下列有关氧气的“自述”,错误的是

  A.我不易溶于水 B.我具有可燃性

  C.我能供给呼吸 D.我的化学性质比较活泼

  2. 下列描述属于氧气化学性质的是

  A.通常情况下氧气是无色无味的气体

  B.通过低温加压,可以使氧气液化成淡蓝色 的液体

  C.液态氧可用作发射火箭的助燃剂

  D.氧气是一种性质比较活泼的气体,能氧化许多物质

  课后作业

  学习与评价P15-16 1-9.12

  【教学反思】

  能够依据课程标准教给学生学习具体物质的方法,能够借助演示实验给学生以视觉冲击,关注学生实验现象的语言描述训练,能够从化学学科素养的培养视角组织教学,框架意识比较强。

  本节课不足之处:教学容量偏多,个别知识点拓展过深。实验细节的强调还不够。


函数的性质教案5篇(扩展7)

——小数的性质教案3篇

小数的性质教案1

  教学目标:

  1、初步理解小数的基本性质,并应用性质化简和改写小数。

  2、运用猜测、操作、检验、观察、对比等方法,探索并发现小数的性质,养成探求新知的良好品质。

  3、感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。

  教学重点:让学生理解并掌握小数的性质。

  教学难点:能应用小数的性质解决实际问题.

  教学过程:

  (一)、创设情境,引导探索

  1师:夏天的天气非常炎热,孩子们你们爱吃雪糕吗?老师对学校附近雪糕的价格做了一个小调查,你们想了解一下吗?老师了解到校门口左边的商店雪糕的价格是0.5元,右边一家则是0.50元,那你们去买的时候会选择哪一家呢?为什么?

  师:为什么0.5元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来学习小数的性质。(板书课题:小数的性质)

  二、探究新知、课中释疑

  1.教学例1

  比较0.1m 0.10m 0.100m的大小

  师:想一想括号里填上什么单位,才能使等式成立?

  1( )=10( )=100( )

  生汇报(重点讲解:1分米=10厘米=100毫米)

  你能把它们改写成用米做单位的小数的形式吗?

  根据学生回答归纳演示: 1分米是1/10米,写成0.1米

  10厘米是10个1/100米,写成0.10米

  100毫米是100个1/1000米,写成0.100米

  并板书:01米 0.10米 0.100米

  那0.1米、0.10米、0.100米之间大小有什么关系呢?

  3)指导看黑板:

  1分米 = 10厘米 = 100毫米

  0.1米 = 0.10米 = 0.100米

  4)观察比较:教师指着“0.l米=0.10米=0.100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?

  5)根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”,小数的大小不变。

  是不是所有的小数都有这个性质呢?这是不是一个特例?我们还需再验证一下。

  2.教学例2

  比较0.3和0.30的大小

  1)师:你认为这两个数的大小怎样?(让学生先应用结论猜一猜)

  2)师:想一下你用什么办法来比较这两个数的大小呢?(利用学具,小组讨论合作)

  3)在两个大小一样的正方形里涂色比较。

  汇报结论:0.3=0.30

  4)师质疑:小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?(*均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)

  5)师:同学们,你们真了不起,通过动手操作验证得出了这个性质,这就是我们今天学习的内容-小数的性质(课件出示)

  小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

  6)认真读这句话,你认为那些字是非常关键或者必不可少的?为什么?

  生:末尾,因为中间的0是不能随意去掉的,去掉后就改变了小数的大小。

  3.小数的化简

  师:根据小数的性质,当遇到小数末尾有0时,一般可以去掉末尾的0,这就是小数的化简,你想试试看看吗?(课件出示例3)

  把0.70和105.0900化简.

  105.0900中“9”前面的“0”为什么不能去掉?

  (0.70=0.7;105.0900=105.09)

  教师强调:末尾和后面不同。

  师:完成教材39页“做一做”的第1题(学生独立完成,全班订正)

  4.小数的应用

  1)师:利用小数的性质不仅可以化简小数,有时根据需要,可以在小数的末尾添上0;还可以在整数的个位右下角点上小数点,再添上0,把整数改写成小数的形式,这就是小数的改写,下面我们学习例4

  2)不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数.学生独立完成,全班共同订正。

  (0.2=0.200;4.08=4.080;3=3.000)

  思考:“3”的后面不加小数点行吗?为什么?

  3)师:完成教材39页“做一做”的第1题(学生独立完成,全班订正)

  三、巩固深化,拓展思维

  师:同学们的表现真棒,为了加大难度,老师设计了闯关游戏,你们有信心接受老师的挑战吗?

  挑战一:判断

  挑战二:连线

  挑战三:智力大比拼

  四、课堂小结

  这节课你有哪些收获?

  五、布置作业.

  完成练习十1-3题。

  板书设计:

  小数的性质

  0.1米 = 0.10米 = 0.100米

  0.3= 0.30

  小数的性质:小数的末尾添上0或者去掉0,小数的大小不变 。

小数的性质教案2

  教学内容:

  四年级下册教材第38、39页的内容及练习十第1、2、3、4题。

  教学目的:

  1. 引导学生知道、掌握小数的性质,能利用小数的性质进行小数的化简和改写.

  2. 培养学生的动手操作能力以及观察、比较、抽象和归纳概括的能力.

  3. 培养学生初步的数学意识和数学思想,使学生感悟到数学知识的内在联系,同时渗透事物在一定情况下可以相互转化的观点.

  教学重点:

  让学生理解并掌握小数的性质.

  教学难点:

  能应用小数的性质解决实际问题.

  教学步骤:

  一、创设情境,导入新课。

  创设情境:夏天的时候同学们都爱吃冷饮,老师了解到校门口左边的商店里一种雪糕标价是2.5元,右边一家则是2.50元,那你们去买的时候会选择哪一家呢?为什么?

  为什么2.5元末尾添个0价钱不变呢?究竟可以添几个零呢?这节课我们就来研究这一方面的知识。

  二、出示课题,提出目标。

  1.知道、掌握小数的性质,能利用小数的性质进行小数的化简和改写.

  2.培养动手操作能力以及观察、比较、抽象和归纳概括的能力.

  3.培养初步的数学意识和数学思想,感悟到数学知识的内在联系.

  三、自学尝试,探究新知。

  1.出示尝试题

  (1)1、10、100这三个数相等吗?你能想办法使它们相等吗?

  (2)你能把1分米、10厘米、100毫米改用米作单位表示吗?

  (3)改写成用米作单位表示后,实际长度有没有变化?说明什么?

  (4)0.1米= 0.10米=0.100米这个等式从左往右看,小数末尾有什么变化?小数大小有什么变化?从右往左看又怎样呢?你发现了什么规律?

  2.学生自学课本38页后尝试练习并讨论。(5分钟后全班交流)。

  3.根据自学情况引导讲解。

  四、拓展练习, 验证结论。

  为了验证我们的这个结论,我们再来做一个实验。

  1.出示做一做:比较0.30与0.3的大小

  你认为这两个数的大小怎样?(让学生先应用结论猜一猜)

小数的性质教案3

  教学目标:

  1、知识目标:引导学生初步理解小数的性质;能运用小数的性质正确地化简小数和改写小数。

  2、能力目标:激发学生积极主动的探究精神,培养学生归纳、分析的能力。

  3、情感目标:培养学生爱学数学的情感。

  教学重点:

  理解小数的末尾添上“0”或去掉“0”,小数的大小不变的道理。并正确运用这一性质解决相关问题。

  教学难点

  掌握在小数部分什么位置添“0”去“0”,小数大小不变。

  教具准备:

  学习纸“小魔术”纸卡多媒体课件

  课时:1课时

  教学过程:

  一、情景导入(小魔术)

  1、师:同学们,第一次给你们上课,作为礼节,我给大家表演个魔术——数字的变化。看这是数字1?等会你们一起小声喊:1,2,3,大,老师就可以把这个数变大了。信不信?

  生:1,2,3,大。

  师:把1变成10,10和1比扩大了10倍,……

  2、老师还有一个数0.1,我们再来试一试。

  引起学生的冲突:到底变大了吗?

  (设汁意图:是把枯燥的数学知识贯穿在小学生喜闻乐道的游戏中,引发学生的学习兴趣,点燃他们求知欲望的火花,从而进入的学习状态,为主动探究新知识聚集动力。)

  这节课,我们就来研究小数末尾“0”对小数的大小的影响。也就是我们今天要学习内容——小数的性质。

  二、探求新知

  (一)教学例1

  1、师:0.1米、0.10米、0.100米,他们到底会不会相等呢?

  师:请拿出你的学习纸把第一题完成。

  汇报:请学生上台展示。填空、比较发现一样,从而得出0.1米=0.10米=0.100米。

  教学中让学生说说你是怎样找出0.1米、0.10米、0.100米。

  (0.1米是一位小数,它的计数单位是1/10,有1个1/10,也就是说0.1米=1/10米,把1米*均分成10分,1份就是1分米。所以0.1米=1分米。

  0.10米是两位小数,它的计数单位是1/100,有10个1/100,也就是说0.10米=10/100米,把1米*均分成100分,1份就是1厘米,10份是10厘米。所以0.10米=10厘米。

  0.100米是三位小数,它的计数单位是1/1000,有100个1/1000,也就是说0.100米=100/1000米,把1米*均分成1000分,1份是1毫米,100份就是100毫米。所以0.100米=100毫米。)

  因为1分米=10厘米=100毫米所以0.1米=0.10米=0.100米

  师:0.1米=0.10米=0.100米(板书)这三个长度是一样的,都是以“米”为单位,我们就可以把数抽象出来0.1=0.10=0.100。

  (设计意图:这样,学生根据小数的意义,主动从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识)。

  仔细观察这组小数,你有什么发现?

  生:小数的末尾添上“0”,小数的大小不变。

  师:同学们的眼光真锐利。小数的末尾添上“0”,小数的大小不变。我现在有个疑问,其它的小数也有这样的特点吗?

  师:现在请同学们翻开学习纸,根据方格图,自己想一组小数把它表示出来。

  学生操作,交流汇报。

  课件展示。

  (教师在学习研究中要加强指导)

  2、师:现在请同学们观察上面的题目中的小数,你能说出几组和它们类似的小数吗?

  学生说说。

  师:能说出这么多组,你们一定发现了什么规律吧?(交流,汇报)

  总结:小数的末尾添上“0”或去掉“0”,小数的大小不变。

  (设计意图:这样教学,把静态的知识结论转化动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固。同时,还培养了学生归纳概括事物本质属性的能力。)

  3、联系生活,再现新知:还有同学们在商场看到货物的标价如:这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。

  (二)小数性质的应用

  1、教学例2

  师:现在我们认识了小数的性质,那么应用小数的性质,我们可以根据需要对小数进行改写。

  电脑演示:化简下面的小数。0.70=105.0900=

  教学0.70=0.7

  问:①你是怎样化简的?(根据小数的性质,去掉小数末尾的“0”就可以把小数化简)

  ②0.70与0.7它们的大小不变,但意义相同吗?

  (不同,0.70表示70个1/100,0.7表示7个1/10)

  教学105、0900=105.09

  问:小数里的其他“0”可以去掉吗?为什么?(不可以,大小改变。师要强调末尾)

  2、教学例3

  电脑演示:不改变数的大小,把下面各数写成三位小数。

  0.2=4.08=3=

  师:你是如何把它改写成三位小数的?(根据小数的性质,在小数的末尾添上“0”小数的大小不变)

  师:3如何改写成三位小数?这个小数点不点的话可以吗?

  注意:

  A、在小数的末尾添“0”。

  B、当这个数是整数时,在整数个位的右下角点上小数点,再添“0”。

  师:应用小数性质时,应注意什么?(小数、末尾)

  三、巩固练习

  课本59页的做一做。

  2、开火车的形式回答59页的做一做。

  问:你是怎样化简和改写这些数的?

  四、全课小节

  1、这节课你学到了什么?

  小数的末尾添上“0”或去掉“0”,小数的大小不变。

  2、我们是怎样探索小数的性质的?

  在整数的末尾添上或去掉0,整数的大小发生了很大的变化,而在小数的末尾添上或去掉0,小数的大小却不变,但是通过在小数的末尾添上或去掉0,我们就给一个小数找到了许多大小不变的朋友,0就是这样一个奇妙的数字。其实,数学王国里有许多奇妙的现象,等着我们不断去探索、发现。

  板书:小数的性质

  小数末尾“0”对小数的大小的影响

  小数的末尾添上“0”或去掉“0”,小数的大小不变。

  0.1米=0.10米=0.100米

  0.1=0.10=0.100


函数的性质教案5篇(扩展8)

——《对数函数及其性质》教学反思3篇

《对数函数及其性质》教学反思1

  《对数函数及其性质》是人教版数学必修一的内容。有人说“课堂教学是学术研究的实践活动,既像科学家进入科学实验室,又像艺术家登上艺术表演的`舞台,教学是一种创造的艺术,一种遗憾的艺术。”回顾这节课有成功之处,也有遗憾之处。

  成功之处:

  1、通过盲生摸读理解函数图象,让学生更直观地归纳出对数函数的性质,对突破本节课的重、难点起了很大的帮助。

  2、在引入新课时,根据我校学生的实际情况我重新设计了教学情境,从“细胞分裂”问题导入新课。由于问题具有开放性,又简单易行,学生表现得都很积极,课堂开始让学生动起来了。这样引入新课就自然了许多,学生接受起来也容易些。一堂成功的数学课,往往给人以自然、和谐、舒服的享受。所以设计恰当的情境引入新课是很重要的。

  3、通过选取不同的底数a的对数图象,让学生类比研究指数函数图象及其性质分组探究对数函数的图象和性质。这个环节让学生合作学习,合作学习让学生感受到学习过程中的互助,还能让学生自己建构知识体系。不同数学内容之间的联系和类比,有助于学生了解与中学数学知识有关的扩展知识及内在的数学思想,促使学生认真思考其中的一些问题,加深对其理解。

  遗憾之处:

  1、在分组讨论如何画对数函数图象时,由于担心教学任务不能准确完成,我就直接找几位学生说出特殊点的坐标来列表,然后“描点、连线”一句话带过,整个过程太过精简,没有让学生真正的参与进来,对调动学生的积极性也没有起到好的作用,让学生失去一个展示自己成果的机会。

  2、在讲完例题紧接着给出的练习题难易不当,这样学生做起来就有点吃力了,甚至有些学生觉得不知道该怎么做了,最后两道稍难的练习题应该留到下节课解决会更好些。

  3、课堂小结只是带领学生复习了本节课所学的重点内容。如果能结合练习题提出问题,让学生思考解决这些问题的同时也为下节课的教学做准备,这样更有助于学生知识的扩展和延伸。

  教育无止境,教育事业应该是一个常做常新的事业。为师无止境,教书生涯应该是一个不断常新不断前行的充满新奇的旅途。反思将让教师的生命变得五彩缤纷,反思将让我们的教育变成一支抑扬顿挫的交响乐。

《对数函数及其性质》教学反思2

  本节课在学习了指数函数及其性质以后,学生通过类比学习的方法很容易进入学习探究的状态,因此我采用了知识迁移及类比的学习方法进行本节课的设计。

  首先,复习有关指数函数知识及简单运算,通过创设文物考古的情境,估算出出土文物或古遗址的年代,引入对数函数的概念。一方面体现了“数学源于现实,寓于现实,用于现实”,另一方面使学生产生强烈的探索欲望。然后,让学生亲自动手画两个图象,我借助电脑手段,通过描点作图,引导学生说出图像特征及变化规律,并从而得出对数函数的性质,提高学生的形数结合的能力。在性质的分析环节中,给予简单的提示(如,从图形观察特征,并用数学符号语言描述等),学生基本上能够运用类比指数函数的性质,说出对数函数的定义域、值域、单调性、过定点、函数值的变化情况等。性质的应用的设计我采用了求定义域及比较大小两个例题及练习,学生完成得还不错。最后用了几分钟总结本堂课所学知识点。

  本堂课有两个亮点。第一,借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高了学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性,增强教学内容的表现形式,在贯彻教学的直观性原则上发挥其独特的优势。第二,由图形变化特征引导学生自己总结出对数函数的性质。使学生积极思维、主动获取知识,从而养成良好的学习方法。

  并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。从课堂效果和学生的作业看来,我认为本堂课还存在着以下两个精品论文参考文献不足之处。第一,内容多,讲得太快,由于大部分学生数学基础较差,理解能力,运算能力,思维能力不高,课堂上应多给学生缓冲的时间。

  比如,在例题讲解的环节,时间上还应多给予学生独立思考的时间。本堂课不应该一节课讲完,应分为两节课来讲,这样才能使课堂简洁。教学语言要更简练着实,教学中应充分挖掘教材内在的魅力,通过生动的比喻,夸张等方法打动学生。有句广告词说:“简约而不简单。”简简单单教数学,实实在在学数学是新课程,新时代对数学课堂教学本质回归的热切期盼。努力让课堂化繁为简,以小见大,以少胜多,充分发挥学生的主体性,促进师生和谐流畅的交流。第二,教学中手势动作不够丰富。如果一堂课教师只仅仅靠单一的语言交流而没有其他辅助的交流,学生听课就一定会象听讲座,听理论培训一样感觉,课堂的气氛就显得死板而毫无生气,更不能很好地调动学生的主观能动性。据有关资料显示:在信息传递中,一句话只表明了说话者要表达的内容的百分之七,声音则占所要表达内容的百分之三十五,而剩下的百分之五十多的内容却来自于说话者的姿态,动作,表情等。由此可见,教师课堂上手势动作的运用对于学生获取信息就非常重要。因而,合理的运用有效的手势动作,用于教师的辅助教学,一定会收到事半功倍的效果。既让教师的语言表达更加完美准确,又能易于学生理解并接受,达到意想不到的效果。

  通过认真的反思,同时参考学生提出的意见,针对学生存在的共性问题,决定举出一些例题讲解,加强学生练习力度,从练习中发现问题,利用晚自习补充讲解,直到大部分学生理解掌握为止。


函数的性质教案5篇(扩展9)

——对数函数及其性质说课稿 (菁选3篇)

对数函数及其性质说课稿1

  一、教学背景

  1、教材分析

  《对数函数及其性质》是人教版普通高中课程数学必修1第二章第二节第二部分内容,对数函数是一类特殊的函数,在实际生产过程中运用很广泛。同时,通过对对数函数及其图象和性质的研究,既可以从具体的感性认识上来对函数的图象和性质更好的理解,也可为以后研究幂函数、三角函数等其它函数的图象和性质起示范和铺垫作用。

  2、学情分析

  刚入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,对数函数又以对数运算为基础,同时,初中函数教学要求降低,导致初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。但在此之前,学生已经学习了指数函数及其性质,学生已经初步对新函数的研究方法有所了解,为本节的学习奠定了基础。

  基于以上分析,我制定如下教学目标及重、难点:

  3、教学目标

  知识与技能:

  初步掌握对数函数的概念、图象及性质,并应用性质解决简单数学问题。

  过程与方法:

  经历对数函数性质的探索过程,体会函数思想、分类讨论思想和转化思想在解决具体问题中的应用。

  情感态度与价值观:

  培养勇于探索的精神,培养学生的成功意识,合作交流的学习方式,激发学生学习数学、应用数学的兴趣。

  4、教学重、难点

  重点:理解对数函数的概念,掌握对数函数的图象及性质。

  难点:由图象探究函数性质,应用性质解决具体问题。

  二、教学方法及手段

  1、教法

  根据建构主义的`学习理论和新课程标准理念,本节课以自主探究法和讲解法为主,以练习法为辅,引导学生自己观察、归纳、分析,培养学生采用自主探究的方法进行学习,使学生体会学习的乐趣。

  2、学法

  (1)类比学习:通过指数函数类比学习对数函数。

  (2)小组合作学习:将学生分成7个小组,通过小组内讨论交流,归纳得出对数函数的图象和性质。

  3、教学手段

  采用多媒体辅助教学。

  三、教学教程

  1、情境引入

  通过银行的复利计算问题,逐步引出对数函数。

  设计意图:情景来源于生活,通过生活中的实例来反应对数函数的重要性,目的在于激发学生学习的兴趣,让每一个学生都主动融入到学习中。

  2、新知探索

  通过上述模型,让学生给对数函数下定义。

  学生用描点法画和的图象,教师再借助于计算机再画几个对数函数的图象,让学生观察并总结出一般情况。

  以“你们能根据图象归纳出对数函数的性质吗?”设问,引导学生能过图象的特征得出对应的性质。

  例比较下列各组数中两个值的大小:

  (1)log23.4和log28.5;

  (2) log0.33.4和log0.38.5;

  (3) loga3.4和loga8.5(a>0,且a≠1);

  (4) log23.4和log3.42;

  (5) log3.42和log0.38.5。

  3、巩固练习

  (1)比较大小:

  lg6________lg8;ln1.3________

  (2)比较正数m,n的大小:

  若,则m_____n;若,则m_____n.

  4、总结提炼

  (1)自主探究新知识的方法;

  (2)本节课应用了哪些数学思想。

  5、布置作业

  (1)阅读教材P70~P72,梳理对数函数的概念、图象、性质等知识点;

  (2)教材P74—7、8

  四、板书设计

  2.2.2对数函数及其性质

  一、概念例题

  二、图象

  三、性质

  四、教学反思

对数函数及其性质说课稿2

  我校是一所农村高中学校,学生的基础比较薄弱,发散性思维还未能得到充分的开发.因此,一直以来,我的数学课堂教学的侧重点是:运用探究式教学方式,积极调动学生学习的主动性,大力培养学生的开放性思维.

  我本次授课的内容是《对数函数及其性质》,整个课题按照新课程标准的要求大概需要3个课时来完成,我提交的是第一个课时的教案.

  函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在实际生活中有着广泛的应用.对数函数这部分教学内容,蕴含了函数与方程及转化的数学思想和方法,是后续学习中不可缺少的部分,也是高考的必考内容.因此在第一课时的教学中,如何有效地激发学生学习对数函数的兴趣是这节课的首要任务.为了降低学生学习的难度,我按照新课程标准的要求制定了适合学生实际水*的教学目标,并在教学过程中把重点放在如何准确把握对数函数的图象与特征上.下面从三个方面来说明我的教案设计.

  一、教学把握得当

  (一)概念引入自然.我首先和学生一起回顾了考古学家是如何估算古遗址的年代,然后让学生动手计算当碳14的含量P取不同数值时相对应的生物死亡年数t,最后再引导学生共同观察t与p之间的关系,从而自然而然的引入概念.

  (二)透彻讲解定义.在引入对数函数的概念后,许多学生可能未能及时地意识到它只是一个形式定义,因此我通过材料1来帮助学生消化与掌握概念.

  (三)坚持让学生自己动手实验.一方面学生已经掌握了画图的一般方法,另一方面通过让学生自己画图,使得他们对图象有丰富的感性认识,印象更加深刻.这样处理,体现了以学生为主体,教师为主导的教学方式.

  (四)巧妙地突破难点.我采取把学生分成若干个小组的形式,由他们进行小组合作讨论、探究、相互补充的方法得出对数函数的性质.这样不但激发了学生学习新知识的兴趣,也提高了学生分析问题的能力以及团队合作的精神,同时也加深了他们对图象的认识.

  另外,学生讨论完毕后,我先让一个小组选派代表上讲台跟全班同学交流他们所得到对数函数的一般图象和性质,然后再请其它小组选派代表提出补充意见,再由老师进行归纳、总结.这样做不但使学生愉快地接受了新知识、活跃了课堂气氛,而且突出双边活动,开启了学生的思维,也符合新课标的教学理念.

  (五)灵活处理例题与练习题.我是通过两则材料(材料2、4)来加深学生对对数函数性质的理解与运用.材料2是作为例题来体现的,目的是让学生利用对数函数的单调性来解决,使学生学会运用数形结合的思想来解决问题.其中材料2的第1、2小题是以具体数字为底数的对数值大小的比较,第3小题则是以字母为底数的对数值大小的比较,这样子设计体现了由具体到抽象、由易到难的原则,符合学生的认知水*.

  而材料4是以练习题的.形式出现的,它是材料2的再现,以口答的形式解决,目的主要是加深学生对新知识的理解与应用;至于材料3是为了提高学生如何求对数型函数定义域的认识而设置的.

  二、充分发挥多媒体辅助教学的优势.一方面为学生展现自己的才华提供了*台:(一)鼓励学生在得到具体的对数函数图象并且经过充分的讨论后敢于上台把观察得出的结论与其他同学交流;(二)为学生之间互相点评各自解答的练习提供支持.另一方面在讲解对数函数的性质时,多媒体演示的直观性、生动性跃然于纸上.这样不仅激发了学生学习的兴趣,还提高了课堂效率.

  三、课堂采取灵活多样的教学方法.既有教师的讲解,又有小组的合作讨论,还有师生的互动交流.这样就充分调动了学生探索新知识的积极性,发挥了学生的主体作用,营造了和谐的课堂气氛,做到了寓学于乐.

  小结侧重于再次讲解对数函数的图象特征及其性质,以期加深学生的印象,同时与教学目的相呼应.

  数学这门科学需要观察和探究,我所设计的这节课就是让学生通过动手实验,然后观察、探究新知的过程,但由于缺乏经验,难免有不足之处,真诚地希望得到各位专家学者的批评指正,使我能够不断地成长与进步.

对数函数及其性质说课稿3

  一、教学背景

  1、教材分析

  《对数函数及其性质》是人教版普通高中课程数学必修1第二章第二节第二部分内容,对数函数是一类特殊的函数,在实际生产过程中运用很广泛。同时,通过对对数函数及其图象和性质的研究,既可以从具体的感性认识上来对函数的图象和性质更好的理解,也可为以后研究幂函数、三角函数等其它函数的图象和性质起示范和铺垫作用。

  2、学情分析

  刚入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,对数函数又以对数运算为基础,同时,初中函数教学要求降低,导致初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。但在此之前,学生已经学习了指数函数及其性质,学生已经初步对新函数的研究方法有所了解,为本节的学习奠定了基础。

  基于以上分析,我制定如下教学目标及重、难点:

  3、教学目标

  知识与技能:

  初步掌握对数函数的概念、图象及性质,并应用性质解决简单数学问题。

  过程与方法:

  经历对数函数性质的探索过程,体会函数思想、分类讨论思想和转化思想在解决具体问题中的应用。

  情感态度与价值观:

  培养勇于探索的精神,培养学生的成功意识,合作交流的学习方式,激发学生学习数学、应用数学的兴趣。

  4、教学重、难点

  重点:理解对数函数的概念,掌握对数函数的图象及性质。

  难点:由图象探究函数性质,应用性质解决具体问题。

  二、教学方法及手段

  1、教法

  根据建构主义的学习理论和新课程标准理念,本节课以自主探究法和讲解法为主,以练习法为辅,引导学生自己观察、归纳、分析,培养学生采用自主探究的方法进行学习,使学生体会学习的乐趣。

  2、学法

  (1)类比学习:通过指数函数类比学习对数函数。

  (2)小组合作学习:将学生分成7个小组,通过小组内讨论交流,归纳得出对数函数的图象和性质。

  3、教学手段

  采用多媒体辅助教学。

  三、教学教程

  1、情境引入

  通过银行的复利计算问题,逐步引出对数函数。

  设计意图:情景来源于生活,通过生活中的实例来反应对数函数的重要性,目的在于激发学生学习的兴趣,让每一个学生都主动融入到学习中。

  2、新知探索

  通过上述模型,让学生给对数函数下定义。

  学生用描点法画和的图象,教师再借助于计算机再画几个对数函数的图象,让学生观察并总结出一般情况。

  以“你们能根据图象归纳出对数函数的性质吗?”设问,引导学生能过图象的特征得出对应的性质。

  例比较下列各组数中两个值的大小:

  (1)log23.4和log28.5;

  (2) log0.33.4和log0.38.5;

  (3) loga3.4和loga8.5(a>0,且a≠1);

  (4) log23.4和log3.42;

  (5) log3.42和log0.38.5。

  3、巩固练习

  (1)比较大小:

  lg6________lg8;ln1.3________

  (2)比较正数m,n的大小:

  若,则m_____n;若,则m_____n.

  4、总结提炼

  (1)自主探究新知识的.方法;

  (2)本节课应用了哪些数学思想。

  5、布置作业

  (1)阅读教材P70~P72,梳理对数函数的概念、图象、性质等知识点;

  (2)教材P74—7、8

  四、板书设计

  2.2.2对数函数及其性质

  一、概念例题

  二、图象

  三、性质

  四、教学反思


函数的性质教案5篇(扩展10)

——高一数学函数的性质的知识点 (菁选3篇)

高一数学函数的性质的知识点1

  (1)增函数

  设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

  如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.

  注意:函数的单调性是函数的局部性质;

  (2) 图象的特点

  如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

  (3).函数单调区间与单调性的判定方法

  (A) 定义法:

  1 任取x1,x2∈D,且x1

  2 作差f(x1)-f(x2);

  3 变形(通常是因式分解和配方);

  4 定号(即判断差f(x1)-f(x2)的正负);

  5 下结论(指出函数f(x)在给定的区间D上的单调性).

  (B)图象法(从图象上看升降)

  (C)复合函数的单调性

  复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

  注意:函数的"单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.

高一数学函数的性质的知识点2

  (1)偶函数

  一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

  (2).奇函数

  一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

  (3)具有奇偶性的函数的图象的特征

  偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

  利用定义判断函数奇偶性的步骤:

  1首先确定函数的定义域,并判断其是否关于原点对称;

  2确定f(-x)与f(x)的关系;

  3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.

  注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .

高一数学函数的性质的知识点3

  (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

  (2)求函数的解析式的主要方法有:

  1)凑配法

  2)待定系数法

  3)换元法

  4)消参法

推荐访问:教案 函数 性质 函数性质教案五篇 函数的性质教案1 函数的性质教案1-3年级

热门文章

认知三角形教案(通用4篇)

三角形(triangle)是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在

关于小学庆国庆主题班会教案【四篇】

国庆节是由一个国家制定的用来纪念国家本身的法定假日。它们通常是这个国家的独立、宪法的签署、元首诞辰或

中班认识年历教案五篇

年历主要有阳历,阴历,阴阳历三种。阳历以地球公转周期为依据:阴历以月相变化为依据;阴阳历结合两者特点

最新手捧空花盆孩子教案反思(优质1合集)

作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。既然教案这么重要,那到底该怎么写一篇优质的教案呢?以下是小编收集整理的教案范文,仅供参考,希望能够帮助到大家。手捧空花盆

爱国爱党主题班会教案范文(精选2篇)

教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课

中小学生资助政策教案范文(精选4篇)

资助,汉语词汇。拼音:zīzhù释义:是指提供资金帮助他人,以下是为大家整理的关于中小学生资助政策教

小学生命教育主题班会教案五篇

以下是为大家整理的关于小学生命教育主题班会教案5篇,供大家参考选择。小学生命教育主题班会教案5篇第1

小班谁哭了心理健康教案3篇

小班谁哭了心理健康教案3篇小班谁哭了心理健康教案篇1【活动设计】进入大班后孩子们变得勇敢了,

关于少先队建队日活动教案【三篇】

教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课

四年级古诗雪梅的教案三篇

教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课

关于安全教案小班100篇(精选范文5篇)

小班,读音为xiǎobān,是一个汉语词语,泛指人数相对较少的班级;小戏班,以下是为大家整理的关于安

关于网络安全班会教案(精选范文5篇)

班会:学校集体活动中最主要的组织活动之一班会:日本2020年山田裕贵主演的电视剧,以下是为大家整理的